

ZGM130S Z-Wave 700 SiP Module Data Sheet

The Silicon Labs Z-Wave 700 SiP Module, ZGM130S, is a fully integrated Z-Wave module, enabling rapid development of Z-Wave solutions.

It is an ideal solution for energy-friendly smart home control applications such as motion sensors, door/window sensors, access control, appliance control, building automation, energy management, lighting, and security networks in the "Internet of Things".

Built with low-power Gecko technology, which includes innovative low energy techniques, fast wake-up times and energy saving modes, the ZGM130S reduces overall power consumption and maximizes battery life.

The module contains a native security stack and a comprehensive set of hardware peripherals usable for advanced device functionality, and offers 64 kB of flash memory for OEM applications.

Z-Wave 700 ZGM130S modules can be used in a wide variety of applications:

- · Smart Home
- Security
- Lighting
- · Health and Wellness
- Metering
- · Building Automation

KEY FEATURES

- TX power up to 14 dBm
- RX sensitivity @ 100 kbps: -103.9 dBm
- · Range: up to 1 mile
- 9.8 mA RX current at 100 kbps, GFSK, 868 MHz
- 13.3 mA TX current at 0 dBm output power at 908 MHz
- 0.8 µA EM4H current (128 Byte RAM retention and RTCC running from LFRCO)
- 32-bit ARM® Cortex®-M4 core at 39 MHz
- Flash memory: 512 kB (64 kB Application)
- RAM: 64 kB (8 kB Application)
- Autonomous Hardware Crypto Accelerator and Random Number Generator
- Integrated DC-DC Converter
- · Robust peripheral set and up to 32 GPIO
- External SAW filter optional

1. Feature List

The ZGM130S highlighted features are listed below.

- Low Power Wireless System-on-Chip.
 - High Performance 32-bit, 39 MHz ARM Cortex [®]-M4 with DSP instruction and floating-point unit for efficient signal processing
 - Embedded Trace Macrocell (ETM) for advanced debugging
 - 512 kB flash program memory (64 kB available for user applications)
 - 64 kB RAM data memory (8kB available for user applications)
 - TX power up to 14 dBm
 - Supports optional external SAW filter

Low Energy Consumption

- 9.8 mA RX current at 100 kbps, GFSK, 868 MHz
- 40.1 mA TX current at 14 dBm output power at 912 MHz
- 40.7 mA TX current at 13 dBm output power at 868 MHz
- 13.3 mA TX current at 0 dBm output power at 908 MHz
- + 69 μ A/MHz in Active Mode (EM0)
- 0.8 µA EM4 current (128 Byte RAM retention and RTCC running from LFRCO)

High Receiver Performance

- -97.9 dBm sensitivity at 100 kbit/s GFSK, 868 MHz
- · -97.5 dBm sensitivity at 100 kbit/s GFSK, 915 MHz
- -103.9 dBm sensitivity at 100 kbit/s DSSS O-QPSK, 912 MHz

Supported Protocols:

- Z-Wave
- Z-Wave Long Range

Support for Internet Security

- General Purpose CRC
- True Random Number Generator (TRNG)
- 2 × Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC

- Wide selection of MCU peripherals
 - 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
 - 2 × Analog Comparator (ACMP)
 - 2 × Digital to Analog Converter (VDAC)
 - 3 × Operational Amplifier (Opamp)
 - Digital to Analog Current Converter (IDAC)
 - Low-Energy Sensor Interface (LESENSE)
 - Multi-channel Capacitive Sense Interface (CSEN)
 - 32 pins connected to analog channels (APORT) shared between analog peripherals
 - 32 General Purpose I/O pins with output state retention and asynchronous interrupts
 - 8 Channel DMA Controller
 - 12 Channel Peripheral Reflex System (PRS)
 - 2 × 16-bit Timer/Counter
 - 3 or 4 Compare/Capture/PWM channels
 - 1 × 32-bit Timer/Counter
 - 3 Compare/Capture/PWM channels
 - 32-bit Real Time Counter and Calendar
 - 16-bit Low Energy Timer for waveform generation
 - 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode
 - 16-bit Pulse Counter with asynchronous operation
 - 2 × Watchdog Timer
 - 3 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S)
 - Low Energy UART (LEUART [™])
 - * 2 × I²C interface with SMBus support and address recognition in EM3 Stop

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC
- -40 °C to 85 °C
- Dimensions
 - 9 × 9 × 1.21 mm

2. Ordering Information

Table 2.1.	Ordering	Information
------------	----------	-------------

Ordering Code	Protocol Stack	Max TX Power	Antenna	Flash (kB)	RAM (kB)	GPIO	Carrier
ZGM130S037HGN2	Z-Wave	14 dBm	RF pin	512	64	32	Tray
ZGM130S037HGN2R	Z-Wave	14 dBm	RF pin	512	64	32	Tape & Reel

Table of Contents

1.	Feature List	2
2.	Ordering Information	3
3.	System Overview	7
	3.1 Introduction	7
	3.2 Radio	7 3
	3.3 Power	9 9 9
	3.4 General Purpose Input/Output (GPIO)	9 9
	3.6 Counters/Timers and PWM.	2 2 2 2 2 2 1
	3.7 Communications and Other Digital Peripherals	1 1 1 1
	3.8 Security Features	1 2 2
	3.9 Analog.	2 2 2 3

	3.9.7 Operational Amplifiers	.13
	3.10 Reset Management Unit (RMU)	.13
	3.11 Core and Memory	.13
	3.11.1 Processor Core	.13
	3.11.2 Memory System Controller (MSC)	
	3.11.3 Linked Direct Memory Access Controller (LDMA)	
	3.12 Memory Map	
	3.13 Configuration Summary	
4.	Electrical Specifications	
	4.1 Electrical Characteristics	
	4.1.1 Absolute Maximum Ratings	
	4.1.2 Operating Conditions	.17
	4.1.3 DC-DC Converter	.18
	4.1.4 Current Consumption	.20
	4.1.5 Wake Up Times	.23
	4.1.6 Brown Out Detector (BOD)	
	4.1.7 Frequency Synthesizer	
	4.1.8 Sub-GHz RF Transceiver Characteristics	
	4.1.10 Flash Memory Characteristics	
	2	
	4.1.11 General-Purpose I/O (GPIO)	
	4.1.12 Voltage Monitor (VMON).	
	4.1.13 Analog to Digital Converter (ADC)	
	4.1.14 Analog Comparator (ACMP)	
	4.1.15 Digital to Analog Converter (VDAC)	
	4.1.16 Current Digital to Analog Converter (IDAC)	
	4.1.17 Capacitive Sense (CSEN)	.48
	4.1.18 Operational Amplifier (OPAMP)	.50
	4.1.19 Pulse Counter (PCNT)	.53
	4.1.20 Analog Port (APORT).	.53
	4.1.21 I2C	
	4.1.22 USART SPI Master Timing	
	4.1.23 USART SPI Slave Timing	
	4.2 Typical Performance Curves	
	4.2.1 Zwave Radio	.59
5.	Typical Connection Diagrams	60
	5.1 Typical ZGM130S Connections	.60
6	Pin Definitions	61
•		
	6.1 ZGM130S Device Pinout	
	6.2 GPIO Functionality Table	.64
	6.3 Alternate Functionality Overview	.92
	6.4 Analog Port (APORT) Client Maps	
-		
1.	LGA64 Package Specifications.	113

9.	Revision History																					.119
8.	Certifications	•	•	•	•	•	•	•	•	•		•				•	•		•	•		.118
	7.3 LGA64 Package Marking			•							•		•					•			•	117
	7.2 LGA64 PCB Land Pattern		•																			.116
	7.1 LGA64 Package Dimensions													•		•		•				.114

3. System Overview

3.1 Introduction

The ZGM130S product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application, as well as other system where ultra-small size, reliable high performance RF, low-power consumption and easy application development are key requirements. This section gives a short introduction to the full radio and MCU system.

Note: The hardware functions available to application code are strictly affected by the services enabled in the Z-Wave protocol stack and the version of the stack that is used. The software release note (SRN) for the used Z-Wave protocol version should be consulted to determine whether a specific hardware block is made available by the stack through the Z-Wave API for end-application use.

A detailed block diagram of the ZGM130S module is shown in the figure below.

Figure 3.1. ZGM130S Block Diagram

3.2 Radio

The ZGM130S features a radio transceiver supporting Z-Wave protocol.

3.2.1 Antenna Interface

The antenna interface consists of a single pin, connected to internal balun and matching network.

3.2.2 Packet and State Trace

The ZGM130S Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features:

- · Non-intrusive trace of transmit data, receive data and state information
- · Data observability on a single-pin UART data output, or on a two-pin SPI data output
- · Configurable data output bitrate / baudrate
- · Multiplexed transmitted data, received data and state / meta information in a single serial data stream

3.2.3 Random Number Generator

The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications.

Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.

3.3 Power

The ZGM130S has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An integrated DC-DC buck regulator is utilized to further reduce the current consumption.

3.3.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.3.2 DC-DC Converter

The dc-dc buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3. Patented RF noise mitigation allows operation of the dc-dc converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The dc-dc converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the dc-dc input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3.3 Power Domains

The ZGM130S has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device.

Peripheral Power Domain 1	Peripheral Power Domain 2
ACMP0	ACMP1
PCNT0	CSEN
ADC0	VDAC0
LETIMER0	LEUART0
LESENSE	12C0
APORT	12C1
-	IDAC

Table 3.1. Peripheral Power Subdomains

3.4 General Purpose Input/Output (GPIO)

ZGM130S has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.5 Clocking

3.5.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the ZGM130S. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.5.2 Internal Oscillators and Crystals

The ZGM130S fully integrates several oscillator sources and a high frequency crystal.

- The high-frequency crystal oscillator (HFXO) and integrated 39 MHz crystal provide a precise timing reference for the MCU and radio.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.6 Counters/Timers and PWM

3.6.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.6.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.6.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.

A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for application software.

3.6.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz RC oscillator (LFRCO) or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.6.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.6.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.7 Communications and Other Digital Peripherals

3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- 1²S

3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.7.3 Inter-Integrated Circuit Interface (I²C)

The I²C interface enables communication between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.7.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.7.5 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.8 Security Features

3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC block implements a Cyclic Redundancy Check (CRC) function supporting a fully-programmable 16-bit polynomial.

3.8.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention.

CRYPTO also provides trigger signals for DMA read and write operations.

3.8.3 True Random Number Generator (TRNG)

The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

3.8.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.9 Analog

3.9.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.9.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.9.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.9.4 Capacitive Sense (CSEN)

The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.9.5 Digital to Analog Current Converter (IDAC)

The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.9.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.9.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.10 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the ZGM130S. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.11 Core and Memory

3.11.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- · Up to 512 kB flash program memory
- Up to 64 kB RAM data memory
- Configuration and event handling of all peripherals
- · 2-pin Serial-Wire debug interface

3.11.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.11.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

3.12 Memory Map

The ZGM130S memory map is shown in the figures below. Note that 64 kB of flash in code space is available for user code. The remainder of the code flash area is reserved for the software stack.

	0xfffffffe 0xe0100000]		
	0xe00fffff	ł.		
CM4 Peripherals	0×e0000000			
	0xdfffffff			
	0x460f0400			
Bit Set	0x460f03ff			
(Peripherals / CRYPTO0)				
	0×46000000			1
	0x45ffffff		CM4 ROM Table	0xe0100000
	0x440f0400 0x440f03ff			0xe00ff000
Bit Clear	0244010311		ETM	0xe0042000
(Peripherals / CRYPTO0)	0×44000000		TPIU	0xe0041000
	0x43ffffff		IPIO	0xe0040000
	0x43e08000			0xe000f000
	0x43e07fff	1 \	System Control Space	0xe000e000
Bit-Band				0xe0003000
(Peripherals / CRYPTO0)	0×42000000		FPB	0xe0002000
	0x41ffffff	1	DWT	0xe0001000
	0×400f0400		ITM	0xe0000000
CRYPTO0	0x400f03ff	1		- 0xe000000
CKIFIOU	0x400f0000			
Peripherals	0x400effff	1 .		0x10010800
- cripiteralb	0×40000000		RAM2	0X10010800
	0x3fffffff		(code space)	0x10010000
	0x22800000	/ /	RAM1	0X10010000
SRAM (bit-band)	0x227fffff		(code space)	0×10008000
	0x22000000 0x21ffffff		RAM0	0,10000000
			(code space)	0x10000000
	0x20010800 0x200107ff			0x0fe08400
RAM2 (data space)	0×20010000		Chip config	0x0fe08000
	0x2000ffff			0x0fe04800
RAM1 (data space)	0×20008000		Lock bits	0x0fe04000
	0x20007fff	1/		0x0fe00800
RAM0 (data space)	0×20000000	/	User Data	0x0fe00000
	0x1fffffff			0x00080000
				3,00000000
Code			Flash (512 KB)	
	0×00000000			J _{0×00000000}

Figure 3.2. ZGM130S Memory Map — Core Peripherals and Code Space

0	PRS	1		0xfffffffe
0x400e6000 0x400e5400 0x400e5000	RMU	1		
	СМО			0xe0100000 0xe00fffff
0x400e44000 0x400e3400 0x400e3000 0x400e2000	EMU		CM4 Peripherals	
0x400e3000 0x400e2000	LMO	Λ.		0xe0000000 0xdfffffff
0x400e1400 0x400e1000	FPUEH			0×460f0400
0x400e1400 0x400e1000 0x400e0800 0x400e0000	MSC			0x460f03ff
0x40088400 0x40088000	RFSENSE		Bit Set	
0x40087400	AGC	Λ.	(Peripherals / CRYPTO0)	0×46000000
0x40080000 0x40088400 0x40087400 0x40087000 0x40086800 0x40086000 0x40085400 0x40085400 0x40085400	MODEM			0x45ffffff
0x40085400	РКОТМЕК			0×440f0400
0x40084400	RAC	1		0x440f03ff
0x40084000 0x40083400	SYNTH	١	Bit Clear (Peripherals / CRYPTO0)	
0x40082400	CRC		(renpilerais / citri roo)	0×44000000
0x40085000 0x40084400 0x40084400 0x40083400 0x40083400 0x40082400 0x40082400 0x40081400 0x40081400 0x40080400 0x40055400 0x40055400 0x40052400 0x40052000 0x40052000 0x4004400	BUFC	1		0x43ffffff
0x40081000 0x40080400	FRC			0x43e08000
0x40080000 0x40055400	LESENSE	\ \		0x43e07fff
0x40055000 0x40052800			Bit-Band (Peripherals / CRYPTO0)	
0x40052400 0x40052000	WDOG1 WDOG0			0×42000000
0x4004e400 0x4004e000	PCNT0			0x41ffffff
0x4004e400 0x4004e000 0x4004a000 0x4004a000 0x40046000 0x40046000 0x40044000 0x40044000 0x40042400 0x40042000 0x40022000 0x40022000 0x40016000	LEUARTO	1		0x400f0400
0x40046400 0x40046000	LETIMERU	١	CRYPT00	0×400f03ff
0x40044400 0x40044000	PRORIC			0×400f0000
0x40042400 0x40042000	RICC		Peripherals	0x400effff
0x40022400	SMU			0x40000000 0x3fffffff
0x4001f400 0x4001f000	CSEN			
0x4001e400 0x4001e000	CRYOTMER			0x22800000 0x227fffff
0x4001d400 0x4001d000	TRNGU	/	SRAM (bit-band)	0×22000000
0x4001c400 0x4001c000	GPCRC	/		0x22000000 0x21ffffff
0×4001-400	WTIMERO			0x20010800
0x4001a000 0x40018800 0x40018800 0x40018400 0x40018000 0x40010c00	TIMERI			0x20010000
0x40018400 0x40018000			RAM2 (data space)	0×20010000
0x40010200 0x40010800 0x40010400	USAR12 USAR11	/		0x2000ffff
0x40010000	ŬŜĂRIŌ	/	RAM1 (data space)	0×20008000
0x4000c800 0x4000c400	12C1 12C0			0x20007fff
0x4000c000 0x4000b000	GPIO		RAM0 (data space)	0×20000000
0x4000a000 0x40008400 0x40008000	VDACU			0x1fffffff
	IDACO			
0x40006000 0x40002400		/	Code	
0x40006000 0x40002400 0x40002000 0x40002000 0x4000800	ADCU	1		
0x40000400 0x40000000	ACMP1 ACMP0			0×00000000

Figure 3.3. ZGM130S Memory Map — Peripherals

3.13 Configuration Summary

The features of the ZGM130S are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining peripherals support full configuration.

Table 3.2. Configuration Summary

Peripheral	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	I ² S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA SmartCard	US2_TX, US2_RX, US2_CLK, US2_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB}=25 °C and V_{DD}= 3.3 V, by production test and/or technology characterization.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-40	_	85	°C
Voltage on any supply pin	V _{DDMAX}		-0.3	_	3.8	V
Voltage ramp rate on any supply pin	V _{DDRAMPMAX}		_	_	1	V / µs
DC voltage on any GPIO pin	V _{DIGPIN}	5V tolerant GPIO pins ^{1 2 3}	-0.3	_	Min of 5.25 and IOVDD +2	V
		Standard GPIO pins	-0.3	_	IOVDD+0.3	V
Total current into supply pins	I _{VDDMAX}	Source	—	_	200	mA
Total current into VSS ground lines	IVSSMAX	Sink	_	_	200	mA
Current per I/O pin	I _{IOMAX}	Sink	_	_	50	mA
		Source			50	mA
Current for all I/O pins	I _{IOALLMAX}	Sink	_	_	200	mA
		Source	—	_	200	mA
Junction temperature	TJ		-40	_	105	°C

Table 4.1. Absolute Maximum Ratings

Note:

1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD.

- Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications.
- 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD = AVDD
- IOVDD ≤ AVDD

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating ambient tempera- ture range	T _A	-G temperature grade	-40	25	85	°C
AVDD supply voltage ¹	V _{AVDD}		1.8	3.3	3.8	V
VREGVDD operating supply	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
voltage ^{1 2}		DCDC in bypass, 50mA load	1.8	3.3	3.8	V
VREGVDD current	I _{VREGVDD}	DCDC in bypass, T ≤ 85 °C	_	_	200	mA
IOVDD operating supply volt- age	VIOVDD	All IOVDD pins ³	1.62	-	V _{VREGVDD}	V
HFCORECLK frequency	f _{CORE}	VSCALE2, MODE = WS1	_	_	39	MHz
HFCLK frequency	fHFCLK	VSCALE2	_	-	39	MHz
		·		•		

Table 4.2. General Operating Conditions

Note:

1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.

2. The minimum voltage required in bypass mode is calculated using R_{BYP} from the DCDC specification table. Requirements for other loads can be calculated as V_{DVDD_min}+I_{LOAD} * R_{BYP_max}.

3. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD.

4.1.3 DC-DC Converter

Test conditions: V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.

Table 4.3. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input voltage range	V _{DCDC_I}	Bypass mode, I _{DCDC_LOAD} = 50 mA	1.8	—	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I _{DCDC_LOAD} = 100 mA, or Low power (LP) mode, 1.8 V out- put, I _{DCDC_LOAD} = 10 mA	2.4		V _{VREGVDD} MAX	V
Output voltage programma- ble range ¹	V _{DCDC_O}		1.8	_	V _{VREGVDD}	V
Regulation DC accuracy	ACC _{DC}	Low Noise (LN) mode, 1.8 V tar- get output	1.7	_	1.9	V
Regulation window ²	WIN _{REG}	Low Power (LP) mode, LPCMPBIASEMxx ³ = 0, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 75 µA	1.63	_	2.2	V
		Low Power (LP) mode, LPCMPBIASEMxx ³ = 3, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 10 mA	1.63	_	2.1	V
Steady-state output ripple	V _R	Radio disabled	_	3	_	mVpp
Output voltage under/over- shoot	V _{OV}	CCM Mode (LNFORCECCM ³ = — 25 60 1), Load changes between 0 mA and 100 mA — 25 60	60	mV		
		DCM Mode (LNFORCECCM ³ = 0), Load changes between 0 mA and 10 mA	_	45	90	mV
		Overshoot during LP to LN CCM/DCM mode transitions com- pared to DC level in LN mode	_	200	_	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ³ = 1) mode transitions compared to DC level in LN mode	_	40	_	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ³ = 0) mode transitions compared to DC level in LN mode	_	100	-	mV
DC line regulation	V _{REG}	Input changes between $V_{VREGVDD_{MAX}}$ and 2.4 V	_	0.1	-	%
DC load regulation	I _{REG}	Load changes between 0 mA and 100 mA in CCM mode	_	0.1	-	%

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max load current	I _{LOAD_MAX}	Low noise (LN) mode, Medium or Heavy Drive ⁴	_		80	mA
		Low noise (LN) mode, Light Drive ⁴	_		50	mA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 0			75	μA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 3			10	mA

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}.

- 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.
- 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode.
- 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.

4.1.4 Current Consumption

4.1.4.1 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, 1V8 = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.

Table 4.4. Current Consumption 3.3 V using DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	39 MHz crystal, CPU running while loop from flash ²	_	87	_	µA/MHz
abled, DCDC in Low Noise DCM mode ¹		38 MHz HFRCO, CPU running Prime from flash	_	69	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	70	_	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	82	—	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	76	—	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	615	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	39 MHz crystal, CPU running while loop from flash ²	_	97	_	µA/MHz
abled, DCDC in Low Noise CCM mode ³		38 MHz HFRCO, CPU running Prime from flash	_	80	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	81	_	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	92	—	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94	—	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	1145	—	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	_	101	—	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ³		1 MHz HFRCO, CPU running while loop from flash	_	1124	—	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	39 MHz crystal ²	_	56	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Noise		38 MHz HFRCO	_	39	_	µA/MHz
DCM mode ¹		26 MHz HFRCO	_	46	_	µA/MHz
		1 MHz HFRCO	_	588	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM_VS}	19 MHz HFRCO	_	50	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled, DCDC in Low Noise DCM mode ¹		1 MHz HFRCO	-	572	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM2 mode, with voltage scaling enabled, DCDC in LP mode ⁴	I _{EM2_VS}	Full 64 kB RAM retention and RTCC running from LFRCO	—	1.5	_	μA
	1 bank RAM reter	1 bank RAM retention and RTCC running from LFRCO ⁵	_	1.3	_	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 64 kB RAM retention and CRYOTIMER running from ULFR- CO	_	1.14	_	μA
Current consumption in EM4H mode, with voltage scaling enabled	IEM4H_VS	128 byte RAM retention, RTCC running from LFRCO	_	0.8	_	μA

Note:

1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

2. CMU_HFXOCTRL_LOWPOWER=0.

3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.4.2 Current Consumption Using Radio 3.3 V with DC-DC

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V. DC-DC on. T = $25 \degree$ C. Minimum and maximum values in this table represent the worst conditions across process variation at T = $25 \degree$ C.

Table 4.5.	Current Consumption Using Radio 3.3 V with DC-DC
------------	--

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in re-	I _{RX_ACTIVE}	40 kbit/s, 2FSK, F=868.4 MHz	_	9.6	10	mA
ceive mode, active packet reception (MCU in EM1 @ 39 MHz, peripheral clocks		9.6 kbit/s, Manchester, 2FSK, F=868.42 MHz	_	9.6	10	mA
disabled)		100 kbit/s, 2GFSK, F=916.0 MHz	—	9.9	10.3	mA
		40 kbit/s, 2FSK, F=908.4 MHz	_	9.7	10.1	mA
		9.6 kbit/s, Manchester, 2FSK, F=908.42 MHz	—	9.5	9.9	mA
		100 kbit/s, 2GFSK, F=869.85 MHz	—	9.8	10.3	mA
		100 kbit/s, O-QPSK, F=912 MHz	_	10.9		mA
Current consumption in re- ceive mode, listening for	IRX_LISTEN	100 kbit/s, 2GFSK, F=869.85 MHz	_	9.9	10.3	mA
packet (MCU in EM1 @ 39 MHz, peripheral clocks disa-		40 kbit/s, 2FSK, F=868.4 MHz	_	9.7	10.1	mA
bled)		9.6 kbit/s, Manchester, 2FSK, F=868.42 MHz	—	9.6	10	mA
		100 kbit/s, 2GFSK, F=916.0 MHz	_	9.9	10.4	mA
		40 kbit/s, 2FSK, F=908.40 MHz	_	9.7	10.1	mA
		9.6 kbit/s, Manchester, 2FSK, F=908.42 MHz	—	9.5	9.9	mA
		100 kbit/s, O-QPSK, F=912 MHz	_	10.9	_	mA
Current consumption in transmit mode (MCU in EM1	I _{TX}	F=868.4 MHz, CW, 13 dBm out- put power	—	40.7	_	mA
@ 39 MHz, peripheral clocks disabled)		F=908.4 MHz, CW, 4 dBm output power	_	17.9		mA
		F=908.4 MHz, CW, 0 dBm output power	_	13.3	_	mA
		F=912 MHz, CW, 14 dBm output power	_	40.1	_	mA

4.1.5 Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Wake up time from EM1	t _{EM1_WU}		_	3	_	AHB Clocks
Wake up from EM2	t _{EM2_WU}	Code execution from flash	_	10.9	_	μs
		Code execution from RAM	_	3.8	_	μs
Wake up from EM3	t _{EM3_WU}	Code execution from flash	_	10.9	_	μs
		Code execution from RAM	_	3.8		μs
Wake up from EM4H ¹	t _{EM4H_WU}	Executing from flash	_	90	_	μs
Wake up from EM4S ¹	t _{EM4S_WU}	Executing from flash	_	300	_	μs
Time from release of reset	t _{RESET}	Soft Pin Reset released	_	51		μs
source to first instruction ex- ecution		Any other reset released	_	358		μs
Power mode scaling time	t _{SCALE}	VSCALE0 to VSCALE2, HFCLK = 19 MHz ^{2 3}	_	31.8	_	μs
		VSCALE2 to VSCALE0, HFCLK = 19 MHz ⁴	_	4.3	_	μs

Table 4.6. Wake Up Times

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.

2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 μ s + 28 HFCLKs.

3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).

4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.

4.1.6 Brown Out Detector (BOD)

Table 4.7. Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	_	_	1.8	V
		AVDD falling (EM0/EM1)	1.62	—	—	V
		AVDD falling (EM2/EM3)	1.53	—	—	V
AVDD BOD hysteresis	VAVDDBOD_HYST		—	20	—	mV
AVDD BOD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	—	_	1.7	V
		AVDD falling	1.45	_	—	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		—	25	—	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300	_	μs

4.1.7 Frequency Synthesizer

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
RF synthesizer frequency range	f _{RANGE}	779 - 956 MHz	779	_	956	MHz
LO tuning frequency resolu- tion with 39 MHz crystal	f _{RES}	779 - 956 MHz	_	_	24	Hz
Frequency deviation resolu- tion with 39 MHz crystal	df _{RES}	779 - 956 MHz	_	_	24	Hz
Maximum frequency devia- tion with 39 MHz crystal	df _{MAX}	779 - 956 MHz	_	_	559	kHz

Table 4.8. Frequency Synthesizer

4.1.8 Sub-GHz RF Transceiver Characteristics

4.1.8.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V. Crystal frequency = 39 MHz. RF frequency band 915 MHz.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
RF tuning frequency range	F _{RANGE}		902	—	930	MHz
Maximum TX Power ¹	POUT _{MAX}	4 dBm output power setting	_	4	_	dBm
Minimum active TX Power	POUT _{MIN}		_	-30	_	dBm
Output power step size	POUT _{STEP}	output power > 0 dBm	_	0.5	_	dB
Output power variation vs supply at POUT _{MAX}	POUT _{VAR_V}	1.8 V < V _{VREGVDD} < 3.3 V, T = 25 °C	_	2.72		dB
Output power variation vs temperature, peak to peak	POUT _{VAR_T}	-40 to +85 °C	_	1.79	_	dB
Output power variation vs RF frequency	POUT _{VAR_F}	T = 25 °C, Over specified RF tun- ing frequency range	_	1.11	_	dB
Spurious emissions of har- monics at 3 dBm output pow- er, Conducted measurement, 3dBm match, Test Frequen- cy = 908.4 MHz	SPUR _{HARM_FCC}	In restricted bands, per FCC Part 15.205 / 15.209	_	-49	-42	dBm
		In non-restricted bands, per FCC Part 15.249	—	-53	-20	dBc
Spurious emissions out-of- band at 3 dBm output power,	SPUR _{OOB_FCC_}	In non-restricted bands, per FCC Part 15.249	_	-70	-20	dBc
Conducted measurement, 3dBm match, Test Frequen- cy = 908.4 MHz		In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209	_	-58	-46	dBm
		In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209	_	-70	-56	dBm
		In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209	_	-70	-52	dBm
		In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209	_	-66	-42	dBm
Power spectral density limit	PSD ₄	PSD per FCC Part 15.249, 9.6Kbps	_	-0.7	_	dBm/ 3kHz
		PSD per FCC Part 15.249, 40Kbps	_	2.3	_	dBm/ 3kHz
		PSD per FCC Part 15.249, 100Kbps	_	-4.1	_	dBm/ 3kHz

Table 4.9. Sub-GHz RF Transmitter characteristics for 915 MHz Band

Note:

1. If a SAW filter is used, the output power is 2 - 3 dBm lower due to insertion loss. Always adjust the output power to match the limits set by the RF regulatory authorities for the region in which the device is used.

4.1.8.2 Sub-GHz RF Transmitter characteristics for 915 MHz Band, +14 dBm

This table is for the O-QPSK PHY only at +14 dBm. Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3V. Crystal frequency = 39 MHz. RF Center frequency 912 MHz.

Table 4.10. Sub-GHz RF Transmitter characteristics for 915 MHz Band, +14 dBm

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		902	_	930	MHz
Maximum TX Power	POUT _{MAX}	14 dBm output power setting ^{1 2}	—	13.9	_	dBm
Minimum active TX Power	POUT _{MIN}		—	-30	_	dBm
Output power step size	POUT _{STEP}	output power > 0 dBm	—	0.3	_	dB
Output power variation vs supply at POUT _{MAX}	POUT _{VAR_V}	2.0 V < V _{VREGVDD} < 3.3 V, T = 25 °C ³	_	1.9	_	dB
Output power variation vs temperature, peak to peak	POUT _{VAR_T}	-40 to +85 °C	_	1.1	_	dB
Output power variation vs RF frequency	POUT _{VAR_F}	T = 25 °C, Over specified RF tun- ing frequency range	—	0.3	—	dB
Spurious emissions of har- monics at +14 dBm output power, Conducted measure-	SPUR _{HARM_FCC} _ ¹⁴	In restricted bands, per FCC 47 CFR §15.205 & §15.209 ⁴⁵	—	-48	-42	dBm
ment, +14 dBm match, Test Frequency = 912 MHz		In non-restricted bands, per FCC 47 CFR §15.247 ⁶	_	-40	-20	dBc
Spurious emissions out-of- band at +14 dB output pow-	SPUR _{OOB_FCC_} 14	In non-restricted bands, per FCC 47 CFR §15.247 ⁶	_	-66	-20	dBc
er, Conducted measurement, +14 dB match, Test Fre- quency = 912 MHz		In restricted bands (30-88 MHz),per FCC 47 CFR §15.205 & §15.209 ^{4 5}	_	-58	-46	dBm
		In restricted bands (88-216 MHz), per FCC 47 CFR §15.205 & §15.209 ^{4 5}	_	-68	-56	dBm
		In restricted bands (216-960 MHz), per FCC 47 CFR §15.205 & §15.209 ^{4 5}	_	-61	-52	dBm
		In restricted bands (>960 MHz), per FCC 47 CFR §15.205 & §15.209 ^{4 5}	—	-61	-42	dBm
Power spectral density limit	PSD ₁₄	PSD per FCC Part 15.247, 100 kbps O-QPSK	_	-1.1	_	dBm/ 3kHz
Error Vector Magnitude, per 802.15.4-2006	EVM	Signal is 100 kbps DSSS-OQPSK reference packet. Modulated ac- cording to 802.15.4-2006 OQPSK-BPSK in the 915 MHz band, with pseudo-random packet data content. POUT = +14 dBm.	_	5.0		%

ZGM130S Z-Wave 700 SiP Module Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Note:			·				
		etermined by the ordering part r he Max TX Power column of th			s for all devic	es cov-	
 The 14 dBm match is optimized for best efficiency at 14 dBm. The maximum output power can go up to the maximum rating. Emissions are tested with the output power set to 14 dBm. 							
3. Due to supply curre	nt limitations of the	DCDC circuit, POUTmax is on	y achievable at V_VRE	EGVDD > 2.0 \	/		
4. FCC Title 47 CFR F	Part 15 Section 15.2	05 Restricted bands of operation	on.				
5. FCC Title 47 CFR F	Part 15 Section 15.2	09 Radiated emission limits; ge	eneral requirements				
6. FCC Title 47 CFR Part 15 Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.							

4.1.8.3 Sub-GHz RF Receiver Characteristics for 915 MHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V. Crystal frequency = 39 MHz. RF frequency band 915 MHz.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Tuning frequency range	F _{RANGE}		902	—	930	MHz
Max usable input level, 1% FER	SAT _{100K}	Desired is reference 100 kbps GFSK signal ¹		10	_	dBm
Sensitivity ^{2 3}	SENS	Desired is reference 100 kbps GFSK signal ¹ , 1% FER, frequen- cy = 916 MHz, T ≤ 85 °C	_	-97.5	_	dBm
		Desired is reference 100 kbps O- QPSK signal ⁴ , 1% FER, frequen- cy = 912 MHz, T \leq 85 °C		-103.9	_	dBm
		Desired is reference 40 kbps 2FSK signal ⁵ , 1% FER, frequency = 908.4 MHz, T ≤ 85 °C		-101.3	_	dBm
		Desired is reference 9.6 kbps 2FSK signal ⁶ , 1% FER, frequency = 908.42 MHz, T ≤ 85 °C		-102.5	_	dBm
Image rejection, Interferer is CW at image frequency	C/I _{IMAGE}	Desired is reference 100 kbps O- QPSK signal ⁴ , 1% FER, frequen- cy = 912 MHz	_	40.1	_	dB
		Desired is reference 40 kbps 2FSK signal ⁵ at 3dB above sensi- tivity level, 1% FER, frequency = 908.4 MHz		36.2	_	dB
		Desired is 100 kbps GFSK signal ¹ at 3dB above sensitivity level, 1% FER, frequency = 916 MHz	_	34.7	_	dB
		Desired is reference 9.6 kbps 2FSK signal ⁶ at 3dB above sensi- tivity level, 1% FER, frequency = 908.42 MHz		36.1	_	dB
Blocking selectivity, 1% FER.	C/I _{BLOCKER_100}	Interferer CW at Desired ± 1 MHz		48.7		dB
Desired is 100 kbps GFSK signal ¹ at 3dB above sensi-		Interferer CW at Desired ± 2 MHz	_	54.8	_	dB
tivity level, frequency = 916 MHz		Interferer CW at Desired ± 5 MHz	_	64.1		dB
····· ·=		Interferer CW at Desired \pm 10 MHz ⁷	_	67.7	_	dB
		Interferer CW at Desired ± 100 MHz ⁷	_	78.8	_	dB

Table 4.11. Sub-GHz RF Receiver Characteristics for 915 MHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Blocking selectivity, 1% FER.	C/I _{BLOCKER_40}	Interferer CW at Desired ± 1 MHz	_	53.0	_	dB
Desired is 40 kbps 2FSK sig- nal ⁵ at 3dB above sensitivity		Interferer CW at Desired ± 2 MHz	_	58.9	_	dB
level, frequency = 908.4 MHz		Interferer CW at Desired ± 5 MHz	_	71.4	_	dB
		Interferer CW at Desired \pm 10 MHz ⁷	_	79.2		dB
		Interferer CW at Desired \pm 100 MHz ⁷	_	82.8	—	dB
Blocking selectivity, 1% FER.	C/I _{BLOCKER_9p6}	Interferer CW at Desired ± 1 MHz	_	54.2	—	dB
Desired is 9.6 kbps 2FSK signal ⁶ at 3dB above sensi-		Interferer CW at Desired ± 2 MHz	_	62.9	—	dB
tivity level, frequency = 908.42 MHz		Interferer CW at Desired ± 5 MHz	_	72.4	—	dB
		Interferer CW at Desired \pm 10 MHz ⁷	_	80.4	—	dB
		Interferer CW at Desired ± 100 MHz ⁷	_	84.0	_	dB
Blocking selectivity, 1% FER.	C/I _{BLOCK-}	Interferer CW at Desired ± 2 MHz	_	54.2	_	dB
Desired is reference 100 kbps O-QPSK signal ⁴ at -89	ER_OQPSK	Interferer CW at Desired ± 5 MHz	_	59.4		dB
dBm level 1% FER, frequen- cy = 912 MHz		Interferer CW at Desired ± 10 MHz	_	67.0	_	dB
		Interferer CW at Desired ± 100 MHz	_	78.9	—	dB
Intermod selectivity, 1% FER. CW interferers at 400 kHz and 800 kHz offsets	C/I _{IM}	Desired is 100 kbps GFSK signal ¹ at 3dB above sensitivity level, fre- quency = 916 MHz	_	31.6	_	dB
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI _{MAX}		_	_	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI _{MIN}		-98	_	—	dBm
RSSI resolution	RSSI _{RES}	Over RSSI _{MIN} to RSSI _{MAX} range	_	0.25	_	dBm
Max spurious emissions dur-	SPUR _{RX_FCC}	216-960 MHz	_	-82.25	-49.2	dBm
ing active receive mode, per FCC Part 15.109(a)		Above 960 MHz	_	-68.41	-41.2	dBm
Max spurious emissions dur-	SPUR _{RX_ARIB}	Below 710 MHz, RBW=100kHz	_	-69.17	-54	dBm
ing active receive mode,per ARIB STD-T108 Section 3.3		710-900 MHz, RBW=1MHz	_	-71.76	-55	dBm
		900-915 MHz, RBW=100kHz	_	-72.55	-55	dBm
		915-930 MHz, RBW=100kHz	_	-73.07	-55	dBm
		930-1000 MHz, RBW=100kHz	_	-72.84	-55	dBm
		Above 1000 MHz, RBW=1MHz		-71.49	-47	dBm

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:			l.			
1. Definition of refe	rence signal is 100 kbps	2GFSK, BT=0.6, Δf = 58 kHz, NRZ	<u> /</u> , '0' = F_center +	Δf/2, '1' = F_0	center - ∆f/2	
2. Minimum Packet -10dBm.	Error Rate floor will be ~	-0.5% for desired input signal levels	s between specifi	ed datasheet	sensitivity lev	el and
3. Minimum Packet	Error Rate floor will be ~	- 1% for desired input signal levels	> -10dBm.			
4. Definition of refe	rence signals is 100 kbps	s O-QPSK, 800 kcps chip rate, 8x s	spreading factor,	32 bit chip len	gth, 4 bits pe	r symbol
5. Definition of refe	rence signal is 40 kbps 2	FSK, Δf = 40 kHz, NRZ, '0' = F_cer	nter + ∆f/2, '1' = F	center - Δf/2		
	rence signal is 9.6 kbps 2 enter + 20k - Δf/2)	2FSK, Δf = 40 kHz, Manchester, '0'	= Transition from	n (F_center + 2	20k + ∆f/2), '1	1' = Tran-
7. Minimum Packet	Error Rate floor for signa	als in presecene of blocker will incre	ease above 1% f	or blocker leve	els above -30	dBm.

4.1.8.4 Sub-GHz RF Transmitter characteristics for 868 MHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V. Crystal frequency = 39 MHz. RF frequency band 868 MHz.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		863	—	876	MHz
Maximum TX Power ¹	POUT _{MAX}	13 dBm output power setting	_	13	_	dBm
Minimum active TX Power	POUT _{MIN}		_	-30	_	dBm
Output power step size	POUT _{STEP}	output power > 0 dBm	_	0.5	_	dB
Output power variation vs supply at POUT _{MAX}	POUT _{VAR_V}	1.8 V < V _{VREGVDD} < 3.3 V, T = 25 °C	_	2.6	_	dB
Output power variation vs temperature, peak to peak	POUT _{VAR_T}	-40 to +85 °C	_	1.4	_	dB
Output power variation vs RF frequency	POUT _{VAR_F}	T = 25 °C, Over specified RF tun- ing frequency range	_	0.5	_	dB
Spurious emissions of har- monics, Conducted meas- urement, Test Frequency = 868.4 MHz	SPUR _{HARM_ETSI}	Per ETSI EN 300-220, Section 7.8.2.1		-39	-30	dBm
Spurious emissions out-of- band, Conducted measure- ment, Test Frequency = 868.4 MHz	SPUR _{OOB_ETSI}	Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz)		-69	-54	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz)	_	-70	-36	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz)		-66	-30	dBm

Table 4.12. Sub-GHz RF Transmitter characteristics for 868 MHz Band

Note:

1. If a SAW filter is used, the output power is 2 - 3 dBm lower due to insertion loss. Always adjust the output power to match the limits set by the RF regulatory authorities for the region in which the device is used.

4.1.8.5 Sub-GHz RF Receiver Characteristics for 868 MHz Band

Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V. Crystal frequency = 39 MHz. RF frequency band 868 MHz.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Tuning frequency range	F _{RANGE}		863	—	876	MHz
Max usable input level, 1% FER	SAT _{100k}	Desired is reference 100 kbps GFSK signal ¹	_	10	_	dBm
Sensitivity ^{2 3}	SENS	Desired is reference 100 kbps GFSK signal ¹ , 1% FER, frequen- cy = 869.85 MHz, T ≤ 85 °C	_	-97.9	_	dBm
	n Interferer in C/I	Desired is reference 40 kbps 2FSK signal ⁴ , 1% FER, frequency = 868.4 MHz, T \leq 85 °C	_	-101.5	_	dBm
		Desired is reference 9.6 kbps 2FSK signal ⁵ , 1% FER, frequency = 868.42 MHz, T ≤ 85 °C	_	-102.6	_	dBm
Image rejection, Interferer is CW at image frequency	C/I _{IMAGE}	Desired is 100kbps GFSK signal ¹ at 3dB above sensitivity level, 1% FER, frequency = 869.85 MHz	_	33.4	_	dB
		Desired is reference 40 kbps 2FSK signal ⁴ at 3dB above sensi- tivity level, 1% FER, frequency = 868.4 MHz		34.5	_	dB
		Desired is reference 9.6 kbps 2FSK signal ⁵ at 3dB above sensi- tivity level, 1% FER, frequency = 868.42 MHz		35.3		dB
Blocking selectivity, 1% FER.	C/I _{BLOCKER_100}	Interferer CW at Desired ± 1 MHz	_	49.6	_	dB
Desired is 100 kbps GFSK signal ¹ at 3 dB above sensi-		Interferer CW at Desired ± 2 MHz	_	55.6	_	dB
tivity level, frequency = 869.85 MHz		Interferer CW at Desired ± 5 MHz	—	68.1	_	dB
		Interferer CW at Desired \pm 10 MHz ⁶	_	75.1	_	dB
		Interferer CW at Desired \pm 100 MHz ⁶		77.4		dB
Blocking selectivity, 1% FER.	C/I _{BLOCKER_40}	Interferer CW at Desired ± 1 MHz		53.4		dB
Desired is 40 kbps 2FSK sig- nal ⁴ at 3 dB above sensitivity		Interferer CW at Desired ± 2 MHz	_	59.8	_	dB
level, frequency = 868.4 MHz		Interferer CW at Desired ± 5 MHz		71.9		dB
		Interferer CW at Desired \pm 10 MHz ⁶	_	79.5	_	dB
		Interferer CW at Desired ± 100 MHz ⁶		81.1		dB

Table 4.13. Sub-GHz RF Receiver Characteristics for 868 MHz Band

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Blocking selectivity, 1% FER. Desired is 9.6 kbps 2FSK signal ⁵ at 3 dB above sensi- tivity level, frequency = 868.42 MHz	C/I _{BLOCKER_9p6}	Interferer CW at Desired ± 1 MHz	_	54.8		dB
		Interferer CW at Desired ± 2 MHz	_	60.7	_	dB
		Interferer CW at Desired ± 5 MHz	_	72.8		dB
		Interferer CW at Desired \pm 10 MHz ⁶		80.3	_	dB
		Interferer CW at Desired ± 100 MHz ⁶	_	82.1	_	dB
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI _{MAX}		_	_	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI _{MIN}		-98	_	_	dBm
RSSI resolution	RSSI _{RES}	Over RSSI _{MIN} to RSSI _{MAX} range		0.25	_	dBm
Max spurious emissions dur-	SPUR _{RX}	30 MHz to 1 GHz		-67.46	-57	dBm
ing active receive mode		1 GHz to 12 GHz		-69.7	-47	dBm

Note:

1. Definition of reference signal is 100 kbps 2GFSK, BT=0.6, Δf = 58 kHz, NRZ, '0' = F_center + $\Delta f/2$, '1' = F_center - $\Delta f/2$

2. Minimum Packet Error Rate floor will be ~0.5% for desired input signal levels between specified datasheet sensitivity level and -10dBm.

3. Minimum Packet Error Rate floor will be ~ 1% for desired input signal levels > -10dBm.

4. Definition of reference signal is 40 kbps 2FSK, Δf = 40 kHz, NRZ, '0' = F_center + Δf/2, '1' = F_center - Δf/2

5. Definition of reference signal is 9.6 kbps 2FSK, $\Delta f = 40$ kHz, Manchester, '0' = Transition from (F_center + 20k + $\Delta f/2$), '1' = Transition from (F_center + 20k - $\Delta f/2$)

6. Minimum Packet Error Rate floor for signals in presecene of blocker will increase above 1% for blocker levels above -30dBm.

4.1.9 Oscillators

4.1.9.1 High-Frequency Crystal Oscillator (HFXO)

Internal crystal = TXC P/N 8Y39072002

Table 4.14. High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}	39 MHz required for radio transci- ever operation	—	39		MHz
Calibrated precision	PREC _{HFXO}		-2		2	ppm
5-year aging	AGING _{HFXO}		-3	_	3	ppm
Temperature drift	DRIFT _{HFXO}	-40 °C to 85 °C	-13		13	ppm

4.1.9.2 Low-Frequency RC Oscillator (LFRCO)

Table 4.15. Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{LFRCO}	ENVREF ¹ = 1	31.3	32.768	33.6	kHz
		ENVREF ¹ = 0	31.3	32.768	33.4	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ²	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	342	_	nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	494	_	nA
Note:	1	L	I	1		1

note:

1. In CMU_LFRCOCTRL register.

2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	f _{HFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	-2.5	_	2.5	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz		300	_	ns
		4 < f _{HFRCO} < 19 MHz	_	1	_	μs
		f _{HFRCO} ≤ 4 MHz		2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 38 MHz		267	299	μA
supplies		f _{HFRCO} = 32 MHz	—	224	248	μA
		f _{HFRCO} = 26 MHz	_	189	211	μA
		f _{HFRCO} = 19 MHz		154	172	μA
		f _{HFRCO} = 16 MHz	_	133	148	μA
		f _{HFRCO} = 13 MHz	_	118	135	μA
		f _{HFRCO} = 7 MHz		89	100	μA
		f _{HFRCO} = 4 MHz	_	34	44	μA
		f _{HFRCO} = 2 MHz	_	29	40	μA
		f _{HFRCO} = 1 MHz		26	36	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}		_	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}		_	0.1	_	%
Period jitter	PJ _{HFRCO}			0.2	_	% RMS
Frequency limits	f _{HFRCO_BAND}	FREQRANGE = 0, FINETUNIN- GEN = 0	3.47	_	6.15	MHz
		FREQRANGE = 3, FINETUNIN- GEN = 0	6.24		11.45	MHz
		FREQRANGE = 6, FINETUNIN- GEN = 0	11.3	—	19.8	MHz
		FREQRANGE = 7, FINETUNIN- GEN = 0	13.45		22.8	MHz
		FREQRANGE = 8, FINETUNIN- GEN = 0	16.5	_	29.0	MHz
		FREQRANGE = 10, FINETUNIN- GEN = 0	23.11	_	40.63	MHz
		FREQRANGE = 11, FINETUNIN- GEN = 0	27.27	_	48	MHz
		FREQRANGE = 12, FINETUNIN- GEN = 0	33.33	_	54	MHz

Table 4.16. High-Frequency RC Oscillator (HFRCO)

4.1.9.4 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.17. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{ULFRCO}		0.95	1	1.07	kHz

Table 4.18. Flash Memory Characteristics¹

4.1.10 Flash Memory Characteristics¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}		10	_	_	years
Word (32-bit) programming time	tw_prog	Burst write, 128 words, average time per word	20	26.3	30	μs
		Single word	62	68.9	80	μs
Page erase time ²	t _{PERASE}		20	29.5	40	ms
Mass erase time ³	t _{MERASE}		20	30	40	ms
Device erase time ^{4 5}	t _{DERASE}		_	56.2	70	ms
Erase current ⁶	I _{ERASE}	Page Erase	_	_	2.0	mA
Write current ⁶	I _{WRITE}		_	_	3.5	mA
Supply voltage during flash erase and write	V _{FLASH}		1.62		3.6	V

Note:

- 1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
- 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.
- 3. Mass erase is issued by the CPU and erases all flash.
- 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW).
- 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.

6. Measured at 25 °C.

4.1.11 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage ¹	V _{IL}	GPIO pins	_	_	IOVDD*0.3	V
		RESETn	_		AVDD*0.3	V
Input high voltage ¹	VIH	GPIO pins	IOVDD*0.7	_	_	V
		RESETn	AVDD*0.7		_	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \geq 3 V,	IOVDD*0.8		_	V
to IOVDD		DRIVESTRENGTH ² = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	—	-	V
		DRIVESTRENGTH ² = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8		_	V
		DRIVESTRENGTH ² = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ² = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD ≥ 3 V,	_		IOVDD*0.2	V
IOVDD		DRIVESTRENGTH ² = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	_		IOVDD*0.4	V
		DRIVESTRENGTH ² = WEAK				
		Sinking 20 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
		DRIVESTRENGTH ² = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_		IOVDD*0.4	V
		DRIVESTRENGTH ² = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO pins except PB14 and PB15, GPIO ≤ IOVDD	_	0.1	30	nA
		PB14 and PB15, GPIO ≤ IOVDD	_	0.1	50	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	—	3.3	15	μA
I/O pin pull-up/pull-down re- sistor ³	R _{PUD}		30	40	65	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		15	25	45	ns

Table 4.19. General-Purpose I/O (GPIO)
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output fall time, From 70%	t _{IOOF}	C _L = 50 pF,	_	1.8		ns
to 30% of V _{IO}		DRIVESTRENGTH ² = STRONG,				
		SLEWRATE ² = 0x6				
		C _L = 50 pF,	_	4.5		ns
		DRIVESTRENGTH ² = WEAK,				
		SLEWRATE ² = 0x6				
Output rise time, From 30%	t _{ioor}	C _L = 50 pF,		2.2		ns
to 70% of V _{IO}		DRIVESTRENGTH ² = STRONG,				
		SLEWRATE = 0x6 ²				
		C _L = 50 pF,		7.4		ns
		DRIVESTRENGTH ² = WEAK,				
		SLEWRATE ² = 0x6				
RESETn low time to ensure pin reset	T _{RESET}		100	_	_	ns

1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD.

2. In GPIO_Pn_CTRL register.

3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD.

4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including	I _{VMON}	In EM0 or EM1, 1 active channel	—	6.3	8	μA
I_SENSE)	In EM0 or EM1, All channels ac tive	In EM0 or EM1, All channels ac- tive	—	12.5	15	μA
		In EM2, EM3 or EM4, 1 channel active and above threshold	_	62	_	nA
		In EM2, EM3 or EM4, 1 channel active and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, All channels active and above threshold	_	99	_	nA
		In EM2, EM3 or EM4, All channels active and below threshold	_	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	—	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200	_	mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}		—	26	—	mV

Table 4.20. Voltage Monitor (VMON)

4.1.13 Analog to Digital Converter (ADC)

Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.

Table 4.21. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	VRESOLUTION		6		12	Bits
Input voltage range ¹	V _{ADCIN}	Single ended	_	_	V _{FS}	V
		Differential	-V _{FS} /2		V _{FS} /2	V
Input range of external refer- ence voltage, single ended and differential	V _{ADCREFIN_P}		1	_	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	_	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	—	80	-	dB
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTINU-} OUS_LP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	—	270	290	μA
Continuous operation. WAR- MUPMODE ³ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ⁴	—	125	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ⁴	—	80	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ³ = NORMAL	I _{ADC_NORMAL_LP}	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	45	-	μA
		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ⁴	—	8	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	—	105	-	μA
Duty-cycled operation. AWARMUPMODE ³ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	70	-	μA
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTINU-} OUS_HP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	—	325	-	μA
Continuous operation. WAR- MUPMODE ³ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 0 ⁴	—	175	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ⁴	—	125	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	—	85	-	μA
Duty-cycled operation. WAR- MUPMODE ³ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	16	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ³ = KEEP- INSTANDBY or KEEPIN- SLOWACC	IADC_STAND- BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	—	160	-	μA
		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	-	125	-	μA
Current from HFPERCLK	IADC_CLK	HFPERCLK = 16 MHz	_	140	_	μA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ADC clock frequency	f _{ADCCLK}		_	—	16	MHz
Throughput rate	f ADCRATE		_	_	1	Msps
Conversion time ⁵	t _{ADCCONV}	6 bit	_	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit	_	13		cycles
Startup time of reference generator and ADC core	t _{ADCSTART}	WARMUPMODE ³ = NORMAL	_	_	5	μs
		WARMUPMODE ³ = KEEPIN- STANDBY	_	_	2	μs
		WARMUPMODE ³ = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁶ , differential measurement	58	67	_	dB
		External reference ⁷ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	-1	_	2	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	-6	_	6	LSB
Offset error	VADCOFFSETERR		-3	0	3	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	3.5	%
		Using external reference	_	-1	_	%
Temperature sensor slope	V _{TS_SLOPE}		_	-1.84	_	mV/°C

1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on ENUL DV/DD - ANA 200). Any ADC inputs are tagted to the ADC supply (AVDD or DVDD depending on ENUL DV/DD - ANA 200).

EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

- 3. In ADCn_CTRL register.
- 4. In ADCn_BIASPROG register.
- 5. Derived from ADCCLK.

6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

4.1.14 Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹	_	-	V _{ACMPVDD}	V
Supply voltage	VACMPVDD	BIASPROG ² \leq 0x10 or FULL- BIAS ² = 0	1.8	_	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^2 \le 0x20$ and FULLBIAS ² = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including voltage reference ³	I _{ACMP}	$BIASPROG^{2} = 0x10, FULLBIAS^{2}$ $= 0$	_	306	-	nA
		$BIASPROG^{2} = 0x02, FULLBIAS^{2}$ $= 1$	_	6.1	11	μA
		$BIASPROG^{2} = 0x20, FULLBIAS^{2}$ $= 1$	_	74	92	μA
Current consumption of inter- nal voltage reference ³	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	-	nA
		VLP selected as input using VDD	—	20	—	nA
		VBDIV selected as input using 1.25 V reference / 1	_	4.1	-	μA
		VADIV selected as input using VDD/1	_	2.4	-	μA
Hysteresis (V_{CM} = 1.25 V,	Vacmphyst	HYSTSEL ⁴ = HYST0	-3	0	3	mV
$BIASPROG^2 = 0x10, FULL-BIAS^2 = 1)$		HYSTSEL ⁴ = HYST1	5	18	27	mV
		HYSTSEL ⁴ = HYST2	12	33	50	mV
		HYSTSEL ⁴ = HYST3	17	46	67	mV
		HYSTSEL ⁴ = HYST4	23	57	86	mV
		HYSTSEL ⁴ = HYST5	26	68	104	mV
		HYSTSEL ⁴ = HYST6	30	79	130	mV
		HYSTSEL ⁴ = HYST7	34	90	155	mV
		HYSTSEL ⁴ = HYST8	-3	0	3	mV
		HYSTSEL ⁴ = HYST9	-27	-18	-5	mV
		HYSTSEL ⁴ = HYST10	-50	-33	-12	mV
		HYSTSEL ⁴ = HYST11	-67	-45	-17	mV
		HYSTSEL ⁴ = HYST12	-86	-57	-23	mV
		HYSTSEL ⁴ = HYST13	-104	-67	-26	mV
		HYSTSEL ⁴ = HYST14	-130	-78	-30	mV
		HYSTSEL ⁴ = HYST15	-155	-88	-34	mV

Table 4.22. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Comparator delay ⁵	t _{ACMPDELAY}	$BIASPROG^{2} = 0x10, FULLBIAS^{2} = 0$	—	3.7	10	μs
		BIASPROG ² = 0x02, FULLBIAS ² = 1		360	1000	ns
		BIASPROG ² = 0x20, FULLBIAS ² = 1		35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ² =0x10, FULLBIAS ² = 1	-35	_	35	mV
Reference voltage	VACMPREF	Internal 1.25 V reference	1	1.25	1.47	V
		Internal 2.5 V reference	1.98	2.5	2.8	V
Capacitive sense internal re-	R _{CSRES}	CSRESSEL ⁶ = 0	_	infinite	_	kΩ
sistance		CSRESSEL ⁶ = 1	_	15	_	kΩ
		CSRESSEL ⁶ = 2	_	27	_	kΩ
		CSRESSEL ⁶ = 3	_	39	_	kΩ
		CSRESSEL ⁶ = 4	_	51	_	kΩ
		CSRESSEL ⁶ = 5	_	102	-	kΩ
		CSRESSEL ⁶ = 6	—	164	—	kΩ
		CSRESSEL ⁶ = 7		239	_	kΩ

1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.

2. In ACMPn_CTRL register.

3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. $I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$.

4. In ACMPn_HYSTERESIS registers.

5. ± 100 mV differential drive.

6. In ACMPn_INPUTSEL register.

4.1.15 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.23.	Digital to	Analog	Converter	(VDAC)
-------------	------------	--------	-----------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ¹	-V _{VREF}	_	V _{VREF}	V
Current consumption includ- ing references (2 channels) ²	I _{DAC}	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4	_	396	_	μA
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4		72	_	μA
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUP- TIME = 0x0A		1.2	_	μΑ
Current from HFPERCLK ³	IDAC_CLK		_	5.8	_	µA/MHz
Sample rate	SR _{DAC}		_	_	500	ksps
DAC clock frequency	f _{DAC}		_	_	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2	_	_	μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB	_	2.5	_	μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	_	_	12	μs
Output impedance	R _{OUT}	$\begin{array}{l} DRIVESTRENGTH = 2,0.4V \leq \\ V_{OUT} \leq V_{OPA} - 0.4V,-8mA < \\ I_{OUT} < 8mA,Full \text{ supply range} \end{array}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Full supply range	_	2	_	Ω
		DRIVESTRENGTH = 2, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Full supply range	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Full supply range		2	_	Ω
Power supply rejection ratio ⁴	PSRR	Vout = 50% fs. DC		65.5	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	—	60.4	-	dB
Noise band limited to 250 kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6	_	dB
		500 ksps, single-ended, 3.3V VDD reference	—	64.0	_	dB
		500 ksps, differential, internal 1.25V reference	_	63.3	_	dB
		500 ksps, differential, internal 2.5V reference	_	64.4	-	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8	-	dB
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	_	65.3	_	dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	_	66.7	-	dB
		500 ksps, single-ended, 3.3V VDD reference	_	70.0	-	dB
		500 ksps, differential, internal 1.25V reference	_	67.8	-	dB
		500 ksps, differential, internal 2.5V reference	_	69.0	-	dB
		500 ksps, differential, 3.3V VDD reference	_	68.5	_	dB
Total harmonic distortion	THD		_	70.2	—	dB
Differential non-linearity ⁵	DNL _{DAC}		-0.99	_	1	LSB
Intergral non-linearity	INL _{DAC}		-4		4	LSB
Offset error ⁶	V _{OFFSET}	T = 25 °C	-8	_	8	mV
		Across operating temperature range	-25	_	25	mV
Gain error ⁶	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	-2.5	_	2.5	%
		T = 25 °C, Internal reference (RE- FSEL = 1V25 or 2V5)	-5		5	%
		T = 25 °C, External reference (REFSEL = VDD or EXT)	-1.8		1.8	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	-3.5	_	3.5	%
		Across operating temperature range, Internal reference (RE- FSEL = 1V25 or 2V5)	-7.5	_	7.5	%
		Across operating temperature range, External reference (RE- FSEL = VDD or EXT)	-2.0		2.0	%

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External load capactiance, OUTSCALE=0	C _{LOAD}		—	_	75	pF

- 1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.
- 2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load.
- 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU.
- 4. PSRR calculated as 20 * log₁₀(Δ VDD / Δ V_{OUT}), VDAC output at 90% of full scale
- 5. Entire range is monotonic and has no missing codes.
- 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.

4.1.16 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of ranges	N _{IDAC_RANGES}		_	4	—	ranges
Output current	I _{IDAC_OUT}	RANGESEL ¹ = RANGE0	0.05	_	1.6	μA
		RANGESEL ¹ = RANGE1	1.6	_	4.7	μA
		RANGESEL ¹ = RANGE2	0.5	_	16	μA
		RANGESEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	NIDAC_STEPS		_	32	_	steps
Step size	SS _{IDAC}	RANGESEL ¹ = RANGE0	_	50	_	nA
		RANGESEL ¹ = RANGE1	_	100	_	nA
		RANGESEL ¹ = RANGE2	_	500	_	nA
		RANGESEL ¹ = RANGE3	—	2	_	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	-3	_	3	%
		EM0 or EM1, Across operating temperature range	-18	_	22	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.7	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.8	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-0.7	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-0.6	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%

Table 4.24. Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Start up time	t _{IDAC_SU}	Output within 1% of steady state value	_	5	_	μs
Settling time, (output settled	t _{IDAC_SETTLE}	Range setting is changed	_	5	_	μs
within 1% of steady state value),		Step value is changed	_	1		μs
Current consumption ²	I _{IDAC}	EM0 or EM1 Source mode, ex- cluding output current, Across op- erating temperature range	_	11	15	μA
		EM0 or EM1 Sink mode, exclud- ing output current, Across operat- ing temperature range	_	13	18	μA
		EM2 or EM3 Source mode, ex- cluding output current, T = 25 °C	_	0.023	_	μA
		EM2 or EM3 Sink mode, exclud- ing output current, T = 25 °C	_	0.041	_	μA
		EM2 or EM3 Source mode, excluding output current, $T \ge 85 ^\circ\text{C}$	_	11	_	μA
		EM2 or EM3 Sink mode, excluding output current, $T \ge 85 \text{ °C}$	_	13	—	μA
Output voltage compliance in source mode, source current change relative to current sourced at 0 V	ICOMP_SRC	RANGESEL ¹ = RANGE0, output voltage = min(V _{IOVDD} , V_{AVDD}^2 -100 mV)	_	0.11	_	%
		RANGESEL ¹ = RANGE1, output voltage = min(V _{IOVDD} , V_{AVDD}^2 -100 mV)	_	0.06	_	%
		RANGESEL ¹ = RANGE2, output voltage = min(V _{IOVDD} , V_{AVDD}^2 -150 mV)	_	0.04	_	%
		RANGESEL ¹ = RANGE3, output voltage = min(V _{IOVDD} , V_{AVDD}^2 -250 mV)	_	0.03	_	%
Output voltage compliance in sink mode, sink current	I _{COMP_SINK}	RANGESEL ¹ = RANGE0, output voltage = 100 mV	_	0.12	_	%
change relative to current sunk at IOVDD		RANGESEL ¹ = RANGE1, output voltage = 100 mV	_	0.05	_	%
		RANGESEL ¹ = RANGE2, output voltage = 150 mV	_	0.04	_	%
		RANGESEL ¹ = RANGE3, output voltage = 250 mV	_	0.03	_	%

1. In IDAC_CURPROG register.

2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).

4.1.17 Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single conversion time (1x	t _{CNV}	12-bit SAR Conversions	_	20.2	—	μs
accumulation)		16-bit SAR Conversions	_	26.4	_	μs
		Delta Modulation Conversion (sin- gle comparison)	_	1.55	_	μs
Maximum external capacitive load	C _{EXTMAX}	IREFPROG=7 (Gain = 1x), includ- ing routing parasitics	_	68	_	pF
		IREFPROG=0 (Gain = 10x), in- cluding routing parasitics	_	680	_	pF
Maximum external series impedance	R _{EXTMAX}		_	1	_	kΩ
Supply current, EM2 bonded conversions, WARMUP- MODE=NORMAL, WAR- MUPCNT=0	ICSEN_BOND	12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	326	_	nA
		Delta Modulation conversions, 20 ms conversion rate, IRE- FPROG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	226	_	nA
		12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	33	_	nA
		Delta Modulation conversions, 200 ms conversion rate, IRE- FPROG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	25	_	nA
Supply current, EM2 scan conversions, WARMUP- MODE=NORMAL, WAR-	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	690	_	nA
MUPCNT=0		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	515	_	nA
		12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	79	_	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	57	_	nA

Table 4.25. Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current, continuous conversions, WARMUP- MODE=KEEPCSENWARM	ICSEN_ACTIVE	SAR or Delta Modulation conver- sions of 33 pF capacitor, IRE- FPROG=0 (Gain = 10x), always on	_	90.5	_	μA
HFPERCLK supply current	ICSEN_HFPERCLK	Current contribution from HFPERCLK when clock to CSEN block is enabled.	_	2.25	_	µA/MHz

1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).

4.1.18 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{1 2}.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62		3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V_{VSS}		V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ³	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_		37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA $<$ I _{OUT} $<$ 8 mA, Buffer connection, Full supply range	_	0.25	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Buffer connection, Full supply range	_	0.4	-	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	0.99	1	1.01	-
		3x Gain connection	2.93	2.99	3.05	-
		16x Gain connection	15.07	15.7	16.33	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	-	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	-	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	-	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	_	μA

Table 4.26. Operational Amplifier (OPAMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3	—	135	_	dB
		DRIVESTRENGTH = 2	_	137	_	dB
		DRIVESTRENGTH = 1	_	121	_	dB
		DRIVESTRENGTH = 0		109		dB
Loop unit-gain frequency ⁵	UGF	DRIVESTRENGTH = 3, Buffer connection	_	3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection	_	0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection		132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection	—	34	_	kHz
		DRIVESTRENGTH = 3, 3x Gain connection	_	2.57	_	MHz
		DRIVESTRENGTH = 2, 3x Gain connection	—	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection	_	113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection	_	28	_	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection	_	67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	0
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	0
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	0
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz		146		μVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	—	163	_	μVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	—	170	_	μVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176	_	μVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	_	313	_	μVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz		271		μVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	μVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz	_	245	_	μVrms

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Slew rate ⁶	SR	DRIVESTRENGTH = 3, INCBW=1 ⁷	_	4.7	_	V/µs
		DRIVESTRENGTH = 3, INCBW=0	_	1.5	_	V/µs
		DRIVESTRENGTH = 2, INCBW=1 ⁷	—	1.27	_	V/µs
		DRIVESTRENGTH = 2, INCBW=0	_	0.42	_	V/µs
		DRIVESTRENGTH = 1, INCBW=1 ⁷	_	0.17	_	V/µs
		DRIVESTRENGTH = 1, INCBW=0	_	0.058		V/µs
		DRIVESTRENGTH = 0, INCBW=1 ⁷	_	0.044	_	V/µs
		DRIVESTRENGTH = 0, INCBW=0	_	0.015	_	V/µs
Startup time ⁸	T _{START}	DRIVESTRENGTH = 2	_	_	12	μs
Input offset voltage	V _{OSI}	DRIVESTRENGTH = 2 or 3, T = 25 °C	-2	_	2	mV
		DRIVESTRENGTH = 1 or 0, T = 25 °C	-2	_	2	mV
		DRIVESTRENGTH = 2 or 3, across operating temperature range	-12	_	12	mV
		DRIVESTRENGTH = 1 or 0, across operating temperature range	-45	_	30	mV
DC power supply rejection ratio ⁹	PSRR _{DC}	Input referred	_	70	_	dB
DC common-mode rejection ratio ⁹	CMRR _{DC}	Input referred	_	70		dB
Total harmonic distortion	THD _{OPA}	DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, V_{OUT} = 0.1 V to V_{OPA} - 0.1 V	_	90		dB
		DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, V_{OUT} = 0.1 V to V_{OPA} - 0.1 V	_	90		dB

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:			I			
1. Specified config V _{OUTPUT} = 0.5	•	er configuration is: INCBW = 0, HC	MDIS = 0, RESIN	SEL = DISABL	E. V _{INPUT} =	0.5 V,
2. Specified config V. Nominal volt	-	guration is: INCBW = 1, HCMDIS =	= 1, RESINSEL =	VSS, V _{INPUT} =	0.5 V, V _{OUTI}	_{PUT} = 1.5
3. If the maximum	C_{LOAD} is exceeded, an is	olation resistor is required for stat	oility. See AN0038	for more infor	mation.	
drive the resisto	or feedback network. The i	When the OPAMP is connected winternal resistor feedback network of drives 1.5 V between output and	has total resistant			
		bandwidth product of the OPAMP. on of the feedback network.	In 3x Gain connec	ction, UGF is th	ne gain-band	width
6. Step between 0	.2V and V _{OPA} -0.2V, 10%-	-90% rising/falling range.				
	s set to 1 the OPAMP ban may not be stable.	dwidth is increased. This is allowe	ed only when the r	on-inverting cl	lose-loop gair	n is ≥ 3,
9. When HCMDIS		and-off mode, RC network after C de transitions the region from V _{OP} this transition region.		-	-	

4.1.19 Pulse Counter (PCNT)

Table 4.27. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes	—		10	MHz
		Sampled Modes with Debounce filter set to 0.	_	_	8	kHz

4.1.20 Analog Port (APORT)

Table 4.28. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current ^{1 2}	I _{APORT}	Operation in EM0/EM1	—	7	—	μA
		Operation in EM2/EM3		63	_	nA

Note:

1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current.

2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

4.1.21 I2C

4.1.21.1 I2C Standard-mode (Sm)¹

Table 4.29.	I2C	Standard-mode	(Sm) ¹
-------------	-----	---------------	-------------------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7	—	_	μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU_DAT}		250	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	_	_	μs
STOP condition set-up time	t _{SU_STO}		4	—	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7			μs

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

4.1.21.2 I2C Fast-mode (Fm)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	_	400	kHz
SCL clock low time	t _{LOW}		1.3	—	_	μs
SCL clock high time	t _{HIGH}		0.6	—	_	μs
SDA set-up time	t _{SU_DAT}		100	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	—	900	ns
Repeated START condition set-up time	t _{SU_STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.6			μs
STOP condition set-up time	t _{SU_STO}		0.6	_		μs
Bus free time between a STOP and START condition	t _{BUF}		1.3	_	—	μs

Table 4.30. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

4.1.21.3 I2C Fast-mode Plus (Fm+)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0		1000	kHz
SCL clock low time	t _{LOW}		0.5			μs
SCL clock high time	t _{HIGH}		0.26		_	μs
SDA set-up time	t _{SU_DAT}		50		_	ns
SDA hold time	t _{HD_DAT}		100	—	_	ns
Repeated START condition set-up time	t _{SU_STA}		0.26			μs
(Repeated) START condition hold time	t _{HD_STA}		0.26			μs
STOP condition set-up time	t _{SU_STO}		0.26	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	_	_	μs

Table 4.31. I2C Fast-mode Plus (Fm+)¹

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.

4.1.22 USART SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK period ^{1 2 3}	t _{SCLK}		2 * ^t HFPERCLK	_	_	ns
CS to MOSI ^{1 2}	t _{CS_MO}		-12.5	_	14	ns
SCLK to MOSI ^{1 2}	t _{SCLK_MO}		-8.5	—	10.5	ns
MISO setup time ^{1 2}	t _{su_мi}	IOVDD = 1.62 V	90	—	_	ns
		IOVDD = 3.0 V	42	—	_	ns
MISO hold time ^{1 2}	t _{H_MI}		-9	_	_	ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

3. t_{HFPERCLK} is one period of the selected HFPERCLK.

Figure 4.1. SPI Master Timing Diagram

4.1.23 USART SPI Slave Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 2 3}	t _{SCLK}		6 * ^t HFPERCLK	_	—	ns
SCLK high time ^{1 2 3}	t _{SCLK_HI}		2.5 * ^t HFPERCLK	_	—	ns
SCLK low time ^{1 2 3}	t _{SCLK_LO}		2.5 * ^t HFPERCLK	_	—	ns
CS active to MISO ^{1 2}	t _{CS_ACT_MI}		4	—	70	ns
CS disable to MISO ^{1 2}	t _{CS_DIS_MI}		4	—	50	ns
MOSI setup time ^{1 2}	t _{SU_MO}		12.5	_	_	ns
MOSI hold time ^{1 2 3}	t _{H_MO}		13	_	—	ns
SCLK to MISO ^{1 2 3}	t _{SCLK_MI}		6 + 1.5 * ^t HFPERCLK	_	45 + 2.5 * t _{HFPERCLK}	ns

Table 4.33. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

3. t_{HFPERCLK} is one period of the selected HFPERCLK.

Figure 4.2. SPI Slave Timing Diagram

4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

Figure 4.3. RF Transmitter Output Power

RF transmitter output power measured based on reference design BRD4200 at the output of the ZGM130S device.

5. Typical Connection Diagrams

5.1 Typical ZGM130S Connections

Typical connections for the ZGM130S module are shown in Figure 5.1 Typical Power Connections for ZGM130S on page 60 and Figure 5.2 Typical RF Connections for ZGM130S on page 60.

Figure 5.1. Typical Power Connections for ZGM130S

Figure 5.2. Typical RF Connections for ZGM130S

A programming interface is mandatory if In-System Programming of a Z-Wave 700 device is required, i.e., programming a new/erased chip while soldered onto the product PCB. To design in a footprint for the Mini Simplicity header, Silicon Labs recommends using a small 10-pin 1.27 mm SMD header for both programming and debugging of chips from the Silicon Labs Gecko family.

6. Pin Definitions

6.1 ZGM130S Device Pinout

Figure 6.1. ZGM130S Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.2 GPIO Functionality Table or 6.3 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	$ \begin{array}{c} 1\\ 10\\ 11\\ 12\\ 13\\ 14\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 24\\ 25\\ 32\\ 33\\ 43\\ 48\\ 49\\ 51\\ 53\\ 54\\ 55\\ 64\\ \end{array} $	Ground	PF0	2	GPIO (5V)
PF1	3	GPIO (5V)	PF2	4	GPIO (5V)
PF3	5	GPIO (5V)	PF4	6	GPIO (5V)
PF5	7	GPIO (5V)	PF6	8	GPIO (5V)
PF7	9	GPIO (5V)	RESETn	15	Reset input, active low. This pin is inter- nally pulled up to AVDD. To apply an external reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
ANTENNA	23	50 Ohm RF IO.	PD9	26	GPIO (5V)
PD10	27	GPIO (5V)	PD11	28	GPIO (5V)
PD12	29	GPIO (5V)	PD13	30	GPIO
PD14	31	GPIO	PD15	34	GPIO
PA0	35	GPIO	PA1	36	GPIO
PA2	37	GPIO	PA3	38	GPIO
PA4	39	GPIO	PA5	40	GPIO (5V)
PB11	41	GPIO	PB12	42	GPIO
AVDD	44	Analog power supply.	PB13	45	GPIO
PB14	46	GPIO	PB15	47	GPIO
1V8	50	1.8V output of the internal DC-DC con- verter. Internally decoupled - do not add external decoupling.	VREGVDD	52	Voltage regulator VDD input

Table 6.1. ZGM130S Device Pinout

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description		
DECOUPLE	56	N.C. This pin is the decouple output for an on-chip voltage regulator. This pin is internally decoupled, and should be left unconnected on the PCB.	IOVDD	57	Digital IO power supply.		
PC6	58	GPIO (5V)	PC7	59	GPIO (5V)		
PC8	60	GPIO (5V)	PC9	61	GPIO (5V)		
PC10	62	GPIO (5V)	PC11	63	GPIO (5V)		
Note: 1. GPIO with 5V tolerance are indicated by (5V).							

6.2 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 6.3 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name		Pin Alteri	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PA0	BUSDY BUSCX ADC0_EXTN	TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 WTIM0_CC0 #0 LETIM0_OUT0 #0 LETIM0_OUT0 #0 PCNT0_S0IN #0 PCNT0_S1IN #31	US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CLK #30 US1_CTS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31	FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30	CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 LES_CH8

Table 6.2. GPIO Functionality Table

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

GPIO Name		Pin Alter	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PA1	BUSCY BUSDX ADC0_EXTP VDAC0_EXT	TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT0 #1 PCNT0_S0IN #1 PCNT0_S1IN #0	US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0	FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31	CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 LES_CH9
PA2	VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSDY BUSCX OPA0_P	TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 WTIM0_CC0 #2 WTIM0_CC1 #0 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1	US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1	FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0	PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 LES_CH10

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

GPIO Name		Pin Alter	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PA3	BUSCY BUSDX VDAC0_OUT0 / OPA0_OUT	TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC2 #1 TIM1_CC3 #0 WTIM0_CC0 #3 WTIM0_CC1 #1 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2	US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2	FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1	PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 LES_CH11 GPIO_EM4WU8
PA4	VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSDY BUSCX OPA0_N	TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC2 #2 TIM1_CC3 #1 WTIM0_CC0 #4 WTIM0_CC1 #2 WTIM0_CC1 #2 WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3	US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CLK #2 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3	FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2	PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 LES_CH12

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PA5	VDAC0_OUT0ALT / OPA0_OUTALT #0 BUSCY BUSDX	TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 WTIM0_CC0 #5 WTIM0_CC0 #5 WTIM0_CC1 #3 WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT0 #5 PCNT0_S0IN #5 PCNT0_S1IN #4	US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CLK #3 US1_CTS #1 US1_CTS #1 US1_RTS #0 US2_TX #0 US2_TX #0 US2_RX #31 US2_CLK #30 US2_CS #29 US2_CTS #28 US2_RTS #27 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4	FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3	CMU_CLKI0 #4 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 LES_CH13 ETM_TCLK #1

GPIO Name		Pin Alteri	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PB11	BUSCY BUSDX OPA2_P	TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 WTIM0_CC0 #15 WTIM0_CC0 #15 WTIM0_CC1 #13 WTIM0_CC1 #13 WTIM0_CDTI0 #7 WTIM0_CDTI1 #5 WTIM0_CDTI2 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5	US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5	FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4	PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6

GPIO Name	Pin Alternate Functionality / Description						
	Analog	Timers	Communication	Radio	Other		
PB12	BUSDY BUSCX OPA2_OUT	TIMO_CC0 #7 TIMO_CC1 #6 TIMO_CC2 #5 TIMO_CDTI0 #4 TIMO_CDTI1 #3 TIMO_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC2 #5 TIM1_CC3 #4 WTIM0_CC0 #16 WTIM0_CC1 #14 WTIM0_CC1 #14 WTIM0_CC1 #14 WTIM0_CDT10 #8 WTIM0_CDT10 #8 WTIM0_CDT11 #6 WTIM0_CDT12 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6	US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CLK #5 US1_CTS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6	FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5	PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7		

GPIO Name		Pin Alter	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PB13	BUSCY BUSDX OPA2_N	TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 WTIM0_CC0 #17 WTIM0_CC0 #17 WTIM0_CC1 #15 WTIM0_CC1 #15 WTIM0_CDTI0 #9 WTIM0_CDT10 #9 WTIM0_CDT11 #7 WTIM0_CDT12 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7	US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7	FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6	CMU_CLKI0 #0 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9

GPIO Name	Pin Alternate Functionality / Description						
	Analog	Timers	Communication	Radio	Other		
PB14	BUSDY BUSCX	TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 WTIM0_CC0 #18 WTIM0_CC0 #18 WTIM0_CC1 #16 WTIM0_CC1 #16 WTIM0_CDT10 #10 WTIM0_CDT11 #8 WTIM0_CDT12 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8	US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8	FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7	CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9		

GPIO Name	Pin Alternate Functionality / Description						
	Analog	Timers	Communication	Radio	Other		
PB15	BUSCY BUSDX	TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 WTIM0_CC0 #19 WTIM0_CC0 #19 WTIM0_CC1 #17 WTIM0_CC1 #17 WTIM0_CDT10 #11 WTIM0_CDT11 #9 WTIM0_CDT12 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9	US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9	FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8	CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10		
GPIO Name		Pin Alterr	nate Functionality / De	escription			
-----------	----------------	---	---	---	---		
	Analog	Timers	Communication	Radio	Other		
PC6	BUSBY BUSAX	TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 WTIM0_CC0 #26 WTIM0_CC0 #26 WTIM0_CC1 #24 WTIM0_CC1 #24 WTIM0_CC1 #24 WTIM0_CDTI0 #18 WTIM0_CDTI0 #18 WTIM0_CDT11 #16 WTIM0_CDT12 #14 LETIM0_OUT0 #11 LETIM0_OUT0 #11 PCNT0_S0IN #11 PCNT0_S1IN #10	US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CLK #9 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10	FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9	CMU_CLK0 #2 CMU_CLKI0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 ETM_TCLK #3		

GPIO Name		Pin Alteri	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
		TIM0_CC0 #12			
		TIM0_CC1 #11			
		TIM0_CC2 #10	US0_TX #12		
		TIM0_CDTI0 #9	US0_RX #11		
		TIM0_CDTI1 #8	US0_CLK #10		
		TIM0_CDTI2 #7	US0_CS #9		
		TIM1_CC0 #12	US0_CTS #8		CMU_CLK1 #2
		TIM1_CC1 #11	US0_RTS #7	FRC_DCLK #12	PRS_CH0 #9
		TIM1_CC2 #10	US1_TX #12	FRC_DOUT #11	PRS_CH9 #12
PC7	BUSAY	TIM1_CC3 #9	US1_RX #11	FRC_DFRAME #10	PRS_CH10 #1
PC7	BUSBX	WTIM0_CC0 #27	US1_CLK #10	MODEM_DCLK #12	PRS_CH11 #0
		WTIM0_CC1 #25	US1_CS #9	MODEM_DIN #11	ACMP0_O #12
		WTIM0_CC2 #23	US1_CTS #8	MODEM_DOUT #10	ACMP1_O #12
		WTIM0_CDTI0 #19	US1_RTS #7		ETM_TD0
		WTIM0_CDTI1 #17	LEU0_TX #12		
		WTIM0_CDTI2 #15	LEU0_RX #11		
		LETIM0_OUT0 #12	I2C0_SDA #12		
		LETIM0_OUT1 #11	I2C0_SCL #11		
		PCNT0_S0IN #12			
		PCNT0_S1IN #11			

GPIO Name		Pin Alteri	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PC8	BUSBY BUSAX	TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI0 #10 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 WTIM0_CC0 #28 WTIM0_CC0 #28 WTIM0_CC1 #26 WTIM0_CC1 #26 WTIM0_CC1 #26 WTIM0_CDTI0 #20 WTIM0_CDTI0 #20 WTIM0_CDT11 #18 WTIM0_CDT12 #16 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12	US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12	FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11	PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 ETM_TD1

GPIO Name		Pin Alteri	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PC9	BUSAY BUSBX	TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDT12 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 WTIM0_CC0 #29 WTIM0_CC1 #27 WTIM0_CC1 #27 WTIM0_CC1 #27 WTIM0_CDT10 #21 WTIM0_CDT10 #21 WTIM0_CDT11 #19 WTIM0_CDT12 #17 LETIM0_OUT0 #14 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13	US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13	FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12	PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 ETM_TD2

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PC10	BUSBY BUSAX	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 WTIM0_CC0 #30 WTIM0_CC0 #30 WTIM0_CC1 #28 WTIM0_CC1 #28 WTIM0_CC1 #28 WTIM0_CDTI0 #22 WTIM0_CDTI0 #22 WTIM0_CDT10 #22 UTIM0_CDT11 #20 WTIM0_CDT12 #18 LETIM0_OUT0 #15 LETIM0_OUT1 #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 I2C1_SDA #19 I2C1_SCL #18	FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 ETM_TD3 GPIO_EM4WU12

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
		TIM0_CC0 #16			
		TIM0_CC1 #15	US0_TX #16		
		TIM0_CC2 #14	US0_RX #15		
		TIM0_CDTI0 #13	US0_CLK #14		
		TIM0_CDTI1 #12	US0_CS #13		
		TIM0_CDTI2 #11	US0_CTS #12		
		TIM1_CC0 #16	US0_RTS #11		CMU_CLK0 #3
		TIM1_CC1 #15	US1_TX #16	FRC_DCLK #16	PRS_CH0 #13
		TIM1_CC2 #14	US1_RX #15	FRC_DOUT #15	PRS_CH9 #16
PC11	BUSAY	TIM1_CC3 #13	US1_CLK #14	FRC_DFRAME #14	PRS_CH10 #5
FGIT	BUSBX	WTIM0_CC0 #31	US1_CS #13	MODEM_DCLK #16	PRS_CH11 #4
		WTIM0_CC1 #29	US1_CTS #12	MODEM_DIN #15	ACMP0_O #16
		WTIM0_CC2 #27	US1_RTS #11	MODEM_DOUT #14	ACMP1_O #16
		WTIM0_CDTI0 #23	LEU0_TX #16		DBG_SWO #3
		WTIM0_CDTI1 #21	LEU0_RX #15		
		WTIM0_CDTI2 #19	I2C0_SDA #16		
		LETIM0_OUT0 #16	I2C0_SCL #15		
		LETIM0_OUT1 #15	I2C1_SDA #20		
		PCNT0_S0IN #16	I2C1_SCL #19		
		PCNT0_S1IN #15			

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PD9	Analog BUSCY BUSDX	Timers TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC3 #14 WTIM0_CC1 #31 WTIM0_CC2 #29 WTIM0_CDT11 #23 WTIM0_CDT12 #21 LETIM0_OUT0 #17			Other CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17 LES_CH1
		LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16	I2C0_SDA #17 I2C0_SCL #16		

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
		TIM0_CC0 #18			
		TIM0_CC1 #17	US0_TX #18		
		TIM0_CC2 #16	US0_RX #17		
		TIM0_CDTI0 #15	US0_CLK #16		
		TIM0_CDTI1 #14	US0_CS #15		
		TIM0_CDTI2 #13	US0_CTS #14		CMU_CLK1 #4
		TIM1_CC0 #18	US0_RTS #13	FRC_DCLK #18	PRS_CH3 #9
		TIM1_CC1 #17	US1_TX #18	FRC_DOUT #17	PRS_CH4 #1
0040	BUSDY	TIM1_CC2 #16	US1_RX #17	FRC_DFRAME #16	PRS_CH5 #0
PD10	BUSCX	TIM1_CC3 #15	US1_CLK #16	MODEM_DCLK #18	PRS_CH6 #12
		WTIM0_CC2 #30	US1_CS #15	MODEM_DIN #17	ACMP0_O #18
		WTIM0_CDTI0 #26	US1_CTS #14	MODEM_DOUT #16	ACMP1_O #18
		WTIM0_CDTI1 #24	US1_RTS #13		LES_CH2
		WTIM0_CDTI2 #22	LEU0_TX #18		
		LETIM0_OUT0 #18	LEU0_RX #17		
		LETIM0_OUT1 #17	I2C0_SDA #18		
		PCNT0_S0IN #18	I2C0_SCL #17		
		PCNT0_S1IN #17			

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PD11	BUSCY BUSDX	TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 WTIM0_CC2 #31 WTIM0_CDT10 #27 WTIM0_CDT10 #27 WTIM0_CDT11 #25 WTIM0_CDT12 #23 LETIM0_OUT0 #19 LETIM0_OUT0 #19 PCNT0_S0IN #18	US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18	FRC_DCLK #19 FRC_DOUT #18 FRC_DFRAME #17 MODEM_DCLK #19 MODEM_DIN #18 MODEM_DOUT #17	PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 LES_CH3
PD12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSDY BUSCX	TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC2 #18 TIM1_CC3 #17 WTIM0_CDTI0 #28 WTIM0_CDTI0 #28 WTIM0_CDT11 #26 WTIM0_CDT12 #24 LETIM0_OUT0 #20 LETIM0_OUT0 #20 PCNT0_S0IN #20 PCNT0_S1IN #19	US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19	FRC_DCLK #20 FRC_DOUT #19 FRC_DFRAME #18 MODEM_DCLK #20 MODEM_DIN #19 MODEM_DOUT #18	PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 LES_CH4

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PD13	VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSCY BUSDX OPA1_P	TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC2 #19 TIM1_CC3 #18 WTIM0_CDT10 #29 WTIM0_CDT11 #27 WTIM0_CDT12 #25 LETIM0_OUT0 #21 LETIM0_OUT1 #20	US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20	FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19	PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 LES_CH5
PD14	BUSDY BUSCX VDAC0_OUT1 / OPA1_OUT	TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 WTIM0_CDT10 #30 WTIM0_CDT10 #30 WTIM0_CDT11 #28 WTIM0_CDT12 #26 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22	US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21	FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20	CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 LES_CH6 GPIO_EM4WU4

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PD15	VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSCY BUSDX OPA1_N	TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 WTIM0_CDT10 #31 WTIM0_CDT10 #31 WTIM0_CDT12 #27 LETIM0_OUT0 #23 LETIM0_OUT1 #22	US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22	FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21	CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 LES_CH7 DBG_SWO #2

GPIO Name	Pin Alternate Functionality / Description					
	Analog	Timers	Communication	Radio	Other	
PF0	BUSBY BUSAX	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 WTIM0_CDTI1 #30 WTIM0_CDTI1 #30 WTIM0_CDTI2 #28 LETIM0_OUT0 #24 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_CTS #20 US1_RTS #19 US2_TX #14 US2_RX #13 US2_CLK #12 US2_CS #11 US2_CTS #10 US2_CTS #10 US2_RTS #9 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK	

GPIO Name	Pin Alternate Functionality / Description									
	Analog	Timers	Communication	Radio	Other					
PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 WTIM0_CDTI1 #31 WTIM0_CDTI2 #29 LETIM0_OUT0 #25 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_CTS #21 US1_RTS #20 US2_TX #15 US2_RX #14 US2_CLK #13 US2_CS #12 US2_CS #12 US2_CTS #11 US2_RTS #10 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS					

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

GPIO Name		Pin Alterr	nate Functionality / De	escription			
	Analog Timers		Communication	Communication Radio			
PF2	BUSBY BUSAX	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 WTIM0_CDTI2 #30 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0		

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
PF3	BUSAY BUSBX	TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 WTIM0_CDTI2 #31 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26	US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 US2_TX #16 US2_RX #15 US2_CLK #14 US2_CS #13 US2_CTS #12 US2_RTS #11 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26	FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25	CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
			US0_TX #28		
			US0_RX #27		
			US0_CLK #26		
			US0_CS #25		
		TIM0_CC0 #28	US0_CTS #24		
		TIM0_CC1 #27	US0_RTS #23		
		TIM0_CC2 #26	US1_TX #28		
		TIM0_CDTI0 #25	US1_RX #27		
		TIM0_CDTI1 #24	US1_CLK #26	FRC_DCLK #28	PRS_CH0 #4
		TIM0_CDTI2 #23	US1_CS #25	FRC_DOUT #27	PRS_CH1 #3
554	BUSBY	TIM1_CC0 #28	US1_CTS #24	FRC_DFRAME #26	PRS_CH2 #2
PF4	BUSAX	TIM1_CC1 #27	US1_RTS #23	MODEM_DCLK #28	PRS_CH3 #1
		TIM1_CC2 #26	US2_TX #17	MODEM_DIN #27	ACMP0_O #28
		TIM1_CC3 #25	US2_RX #16	MODEM_DOUT #26	ACMP1_O #28
		LETIM0_OUT0 #28	US2_CLK #15		
		LETIM0_OUT1 #27	US2_CS #14		
		PCNT0_S0IN #28	US2_CTS #13		
		PCNT0_S1IN #27	US2_RTS #12		
			LEU0_TX #28		
			LEU0_RX #27		
			I2C0_SDA #28		
			I2C0_SCL #27		

GPIO Name		Pin Alterr	nate Functionality / De	escription	
	Analog	Timers	Communication	Radio	Other
			US0_TX #29		
			US0_RX #28		
			US0_CLK #27		
			US0_CS #26		
		TIM0_CC0 #29	US0_CTS #25		
		TIM0_CC1 #28	US0_RTS #24		
		TIM0_CC2 #27	US1_TX #29		
		TIM0_CDTI0 #26	US1_RX #28		
		TIM0_CDTI1 #25	US1_CLK #27	FRC_DCLK #29	PRS_CH0 #5
		TIM0_CDTI2 #24	US1_CS #26	FRC_DOUT #28	PRS_CH1 #4
055	BUSAY	TIM1_CC0 #29	US1_CTS #25	FRC_DFRAME #27	PRS_CH2 #3
PF5	BUSBX	TIM1_CC1 #28	US1_RTS #24	MODEM_DCLK #29	PRS_CH3 #2
		TIM1_CC2 #27	US2_TX #18	MODEM_DIN #28	ACMP0_O #29
		TIM1_CC3 #26	US2_RX #17	MODEM_DOUT #27	ACMP1_O #29
		LETIM0_OUT0 #29	US2_CLK #16		
		LETIM0_OUT1 #28	US2_CS #15		
		PCNT0_S0IN #29	US2_CTS #14		
		PCNT0_S1IN #28	US2_RTS #13		
			LEU0_TX #29		
			LEU0_RX #28		
			I2C0_SDA #29		
			I2C0_SCL #28		

GPIO Name	Pin Alternate Functionality / Description									
	Analog	Timers	Communication	Radio	Other					
PF6	BUSBY BUSAX	TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT0 #30 PCNT0_S0IN #30 PCNT0_S1IN #29	US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 US2_TX #19 US2_RX #18 US2_CLK #17 US2_CS #16 US2_CTS #15 US2_CTS #15 US2_RTS #14 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29	FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28	CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30					

GPIO Name	Pin Alternate Functionality / Description									
	Analog	Timers	Communication	Radio	Other					
PF7	BUSAY BUSBX	TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC0 #31 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30	US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_CTS #27 US1_RTS #26 US2_TX #20 US2_TX #20 US2_RX #19 US2_CLK #18 US2_CS #17 US2_CTS #16 US2_CTS #16 US2_RTS #15 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30	FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29	CMU_CLKI0 #1 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1					

6.3 Alternate Functionality Overview

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 6.2 GPIO Functionality Table for a list of functions available on each GPIO pin.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
ACMP0_O	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Analog comparator ACMP0, digital out-
ACIMPU_U	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	put.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
ACMP1_O	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Analog comparator ACMP1, digital out-
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	put.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
ADC0_EXTN	0: PA0								Analog to digital converter ADC0 ex- ternal reference in- put negative pin.
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 ex- ternal reference in- put positive pin.
	0: PA1	4: PD9							
CMU CLK0	1: PB15	5: PD14							Clock Management Unit, clock output
	2: PC6	6: PF2							number 0.
	3: PC11	7: PF7							
	0: PA0	4: PD10							
	1: PB14	5: PD15							Clock Management Unit, clock output
CMU_CLK1	2: PC7	6: PF3							number 1.
	3: PC10	7: PF6							
	0: PB13	4: PA5							Clock Management
CMU_CLKI0	1: PF7								Unit, clock input
	2: PC6								number 0.

Table 6.3. Alternate Functionality Overview

Alternate				LOCA	TION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PF0								Debug-interface Serial Wire clock input and JTAG Test Clock.
DBG_SWCLKTCK									Note that this func- tion is enabled to the pin out of reset, and has a built-in pull down.
DBG_SWDIOTMS	0: PF1								Debug-interface Serial Wire data in- put / output and JTAG Test Mode Select.
									Note that this func- tion is enabled to the pin out of reset, and has a built-in pull up.
	0: PF2 1: PB13								Debug-interface Serial Wire viewer Output.
	2: PD15								Note that this func-
DBG_SWO	3: PC11								tion is not enabled after reset, and must be enabled by software to be used.
	0: PF3								Debug-interface JTAG Test Data In.
DBG_TDI									Note that this func- tion becomes avail- able after the first valid JTAG com- mand is received, and has a built-in pull up when JTAG is active.
	0: PF2								Debug-interface JTAG Test Data Out.
DBG_TDO									Note that this func- tion becomes avail- able after the first valid JTAG com- mand is received.
ETM_TCLK	1: PA5 3: PC6								Embedded Trace Module ETM clock .
ETM_TD0	3: PC7								Embedded Trace Module ETM data 0.

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
ETM_TD1	3: PC8								Embedded Trace Module ETM data 1.
ETM_TD2	3: PC9								Embedded Trace Module ETM data 2.
ETM_TD3	3: PC10								Embedded Trace Module ETM data 3.
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Frame Controller,
FRC_DCLK	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	Data Sniffer Clock.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	
	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	Frame Controller,
FRC_DFRAME	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	Data Sniffer Frame active
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	Frame Controller, Data Sniffer Out- put.
FRC_DOUT	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
GPIO_EM4WU0	0: PF2								Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PF7								Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PD14								Pin can be used to wake the system up from EM4
GPIO_EM4WU8	0: PA3								Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PB13								Pin can be used to wake the system up from EM4
GPIO_EM4WU12	0: PC10								Pin can be used to wake the system up from EM4
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
I2C0_SCL	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	I2C0 Serial Clock
1200_30L	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	Line input / output.
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	I2C0 Serial Data in-
I2C0_SDA	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	put / output.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
I2C1_SCL					18: PC10				I2C1 Serial Clock
1201_30L					19: PC11				Line input / output.
I2C1_SDA					19: PC10	20: PC11			I2C1 Serial Data in- put / output.
LES_CH1	0: PD9								LESENSE channel 1.
LES_CH2	0: PD10								LESENSE channel 2.
LES_CH3	0: PD11								LESENSE channel 3.
LES_CH4	0: PD12								LESENSE channel 4.
LES_CH5	0: PD13								LESENSE channel 5.
LES_CH6	0: PD14								LESENSE channel 6.
LES_CH7	0: PD15								LESENSE channel 7.
LES_CH8	0: PA0								LESENSE channel 8.
LES_CH9	0: PA1								LESENSE channel 9.
LES_CH10	0: PA2								LESENSE channel 10.
LES_CH11	0: PA3								LESENSE channel 11.
LES_CH12	0: PA4								LESENSE channel 12.
LES_CH13	0: PA5								LESENSE channel 13.
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
LETIM0_OUT0	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Low Energy Timer LETIM0, output
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	channel 0.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
LETIM0_OUT1	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	Low Energy Timer LETIM0, output channel 1.
	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	LEUART0 Receive
LEU0_RX	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	input.
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	LEUART0 Transmit
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	output. Also used
LEU0_TX	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	as receive input in half duplex commu-
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	nication.
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	MODEM data clock
MODEM_DCLK	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	out.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	MODEM data in.
MODEM_DIN	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	MODEM data out.
	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	
MODEM_DOUT	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
OPA0_N	0: PA4								Operational Amplifi- er 0 external nega- tive input.
OPA0_P	0: PA2								Operational Amplifi- er 0 external posi- tive input.
OPA1_N	0: PD15								Operational Amplifi- er 1 external nega- tive input.
OPA1_P	0: PD13								Operational Amplifi- er 1 external posi- tive input.
OPA2_N	0: PB13								Operational Amplifi- er 2 external nega- tive input.
OPA2_OUT	0: PB12								Operational Amplifier 2 output.
OPA2_P	0: PB11								Operational Amplifi- er 2 external posi- tive input.

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Pulse Counter
PCNT0_S0IN	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	PCNT0 input num- ber 0.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
DONTO SAIN	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	Pulse Counter
PCNT0_S1IN	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	PCNT0 input num- ber 1.
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
	0: PF0	4: PF4	8: PC6	12: PC10					
PRS_CH0	1: PF1	5: PF5	9: PC7	13: PC11					Peripheral Reflex System PRS, chan-
PRS_CHU	2: PF2	6: PF6	10: PC8						nel 0.
	3: PF3	7: PF7	11: PC9						
	0: PF1	4: PF5							
PRS_CH1	1: PF2	5: PF6							Peripheral Reflex System PRS, chan-
PRS_CHI	2: PF3	6: PF7							nel 1.
	3: PF4	7: PF0							
	0: PF2	4: PF6							
PRS_CH2	1: PF3	5: PF7							Peripheral Reflex System PRS, chan-
	2: PF4	6: PF0							nel 2.
	3: PF5	7: PF1							
	0: PF3	4: PF7	8: PD9	12: PD13					
PRS_CH3	1: PF4	5: PF0	9: PD10	13: PD14					Peripheral Reflex System PRS, chan-
	2: PF5	6: PF1	10: PD11	14: PD15					nel 3.
	3: PF6	7: PF2	11: PD12						
	0: PD9	4: PD13							
PRS_CH4	1: PD10	5: PD14							Peripheral Reflex System PRS, chan-
	2: PD11	6: PD15							nel 4.
	3: PD12								
	0: PD10	4: PD14							
PRS_CH5	1: PD11	5: PD15							Peripheral Reflex System PRS, chan-
	2: PD12	6: PD9							nel 5.
	3: PD13								
	0: PA0	4: PA4	8: PB13	12: PD10	16: PD14				
PRS_CH6	1: PA1	5: PA5	9: PB14	13: PD11	17: PD15				Peripheral Reflex System PRS, chan-
	2: PA2	6: PB11	10: PB15	14: PD12					nel 6.
	3: PA3	7: PB12	11: PD9	15: PD13					

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA1	4: PA5	8: PB14						
	1: PA2	5: PB11	9: PB15						Peripheral Reflex
PRS_CH7	2: PA3	6: PB12	10: PA0						System PRS, chan- nel 7.
	3: PA4	7: PB13							
	0: PA2	4: PB11	8: PB15						
PRS_CH8	1: PA3	5: PB12	9: PA0						Peripheral Reflex System PRS, chan-
	2: PA4	6: PB13	10: PA1						nel 8.
	3: PA5	7: PB14							
	0: PA3	4: PB12	8: PA0	12: PC7	16: PC11				
	1: PA4	5: PB13	9: PA1	13: PC8					Peripheral Reflex
PRS_CH9	2: PA5	6: PB14	10: PA2	14: PC9					System PRS, chan- nel 9.
	3: PB11	7: PB15	11: PC6	15: PC10					
	0: PC6	4: PC10							
	1: PC7	5: PC11							Peripheral Reflex
PRS_CH10	2: PC8								System PRS, chan- nel 10.
	3: PC9								
	0: PC7	4: PC11							
	1: PC8	5: PC6							Peripheral Reflex
PRS_CH11	2: PC9								System PRS, chan- nel 11.
	3: PC10								
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
TIM0 CC0	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Timer 0 Capture
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	Compare input / output channel 0.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	Timer 0 Capture
TIM0_CC1	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	Compare input / output channel 1.
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	
	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	Timer 0 Capture
TIM0_CC2	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	Compare input / output channel 2.
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
	0: PA3	4: PB12	8: PC6	12: PC10	16: PD11	20: PD15	24: PF3	28: PF7	
	1: PA4	5: PB13	9: PC7	13: PC11	17: PD12	21: PF0	25: PF4	29: PA0	Timer 0 Compli-
TIM0_CDTI0	2: PA5	6: PB14	10: PC8	14: PD9	18: PD13	22: PF1	26: PF5	30: PA1	mentary Dead Time Insertion channel 0.
	3: PB11	7: PB15	11: PC9	15: PD10	19: PD14	23: PF2	27: PF6	31: PA2	

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA4	4: PB13	8: PC7	12: PC11	16: PD12	20: PF0	24: PF4	28: PA0	
	1: PA5	5: PB14	9: PC8	13: PD9	17: PD13	21: PF1	25: PF5	29: PA1	Timer 0 Compli-
TIM0_CDTI1	2: PB11	6: PB15	10: PC9	14: PD10	18: PD14	22: PF2	26: PF6	30: PA2	mentary Dead Time Insertion channel 1.
	3: PB12	7: PC6	11: PC10	15: PD11	19: PD15	23: PF3	27: PF7	31: PA3	
	0: PA5	4: PB14	8: PC8	12: PD9	16: PD13	20: PF1	24: PF5	28: PA1	
TIM0_CDTI2	1: PB11	5: PB15	9: PC9	13: PD10	17: PD14	21: PF2	25: PF6	29: PA2	Timer 0 Compli- mentary Dead Time
	2: PB12	6: PC6	10: PC10	14: PD11	18: PD15	22: PF3	26: PF7	30: PA3	Insertion channel 2.
	3: PB13	7: PC7	11: PC11	15: PD12	19: PF0	23: PF4	27: PA0	31: PA4	
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	
TIM1_CC0	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	Timer 1 Capture Compare input /
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	output channel 0.
	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	
TIM1 CC1	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	Timer 1 Capture Compare input /
	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	output channel 1.
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	
TIM1_CC2	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	Timer 1 Capture Compare input /
11011_002	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	output channel 2.
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
	0: PA3	4: PB12	8: PC6	12: PC10	16: PD11	20: PD15	24: PF3	28: PF7	
TIM1_CC3	1: PA4	5: PB13	9: PC7	13: PC11	17: PD12	21: PF0	25: PF4	29: PA0	Timer 1 Capture Compare input /
	2: PA5	6: PB14	10: PC8	14: PD9	18: PD13	22: PF1	26: PF5	30: PA1	output channel 3.
	3: PB11	7: PB15	11: PC9	15: PD10	19: PD14	23: PF2	27: PF6	31: PA2	
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	
US0_CLK	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	USART0 clock in-
	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	put / output.
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
	0: PA3	4: PB12	8: PC6	12: PC10	16: PD11	20: PD15	24: PF3	28: PF7	
US0_CS	1: PA4	5: PB13	9: PC7	13: PC11	17: PD12	21: PF0	25: PF4	29: PA0	USART0 chip se-
	2: PA5	6: PB14	10: PC8	14: PD9	18: PD13	22: PF1	26: PF5	30: PA1	lect input / output.
	3: PB11	7: PB15	11: PC9	15: PD10	19: PD14	23: PF2	27: PF6	31: PA2	
	0: PA4	4: PB13	8: PC7	12: PC11	16: PD12	20: PF0	24: PF4	28: PA0	
US0_CTS	1: PA5	5: PB14	9: PC8	13: PD9	17: PD13	21: PF1	25: PF5	29: PA1	USART0 Clear To Send hardware
	2: PB11	6: PB15	10: PC9	14: PD10	18: PD14	22: PF2	26: PF6	30: PA2	flow control input.
	3: PB12	7: PC6	11: PC10	15: PD11	19: PD15	23: PF3	27: PF7	31: PA3	

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA5	4: PB14	8: PC8	12: PD9	16: PD13	20: PF1	24: PF5	28: PA1	
	1: PB11	5: PB15	9: PC9	13: PD10	17: PD14	21: PF2	25: PF6	29: PA2	USART0 Request
US0_RTS	2: PB12	6: PC6	10: PC10	14: PD11	18: PD15	22: PF3	26: PF7	30: PA3	To Send hardware flow control output.
	3: PB13	7: PC7	11: PC11	15: PD12	19: PF0	23: PF4	27: PA0	31: PA4	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	USART0 Asynchro-
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	nous Receive.
US0_RX	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	USART0 Synchro- nous mode Master
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	Input / Slave Out- put (MISO).
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	USART0 Asynchro-
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	nous Transmit. Al- so used as receive
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	input in half duplex communication.
US0_TX	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	USART0 Synchro-
									nous mode Master Output / Slave In-
									put (MOSI).
	0: PA2	4: PB11	8: PB15	12: PC9	16: PD10	20: PD14	24: PF2	28: PF6	
US1_CLK	1: PA3	5: PB12	9: PC6	13: PC10	17: PD11	21: PD15	25: PF3	29: PF7	USART1 clock in-
_	2: PA4	6: PB13	10: PC7	14: PC11	18: PD12	22: PF0	26: PF4	30: PA0	put / output.
	3: PA5	7: PB14	11: PC8	15: PD9	19: PD13	23: PF1	27: PF5	31: PA1	
	0: PA3	4: PB12	8: PC6	12: PC10	16: PD11	20: PD15	24: PF3	28: PF7	
US1_CS	1: PA4	5: PB13	9: PC7	13: PC11	17: PD12	21: PF0	25: PF4	29: PA0	USART1 chip se-
001_00	2: PA5	6: PB14	10: PC8	14: PD9	18: PD13	22: PF1	26: PF5	30: PA1	lect input / output.
	3: PB11	7: PB15	11: PC9	15: PD10	19: PD14	23: PF2	27: PF6	31: PA2	
	0: PA4	4: PB13	8: PC7	12: PC11	16: PD12	20: PF0	24: PF4	28: PA0	
US1_CTS	1: PA5	5: PB14	9: PC8	13: PD9	17: PD13	21: PF1	25: PF5	29: PA1	USART1 Clear To Send hardware
031_013	2: PB11	6: PB15	10: PC9	14: PD10	18: PD14	22: PF2	26: PF6	30: PA2	flow control input.
	3: PB12	7: PC6	11: PC10	15: PD11	19: PD15	23: PF3	27: PF7	31: PA3	
	0: PA5	4: PB14	8: PC8	12: PD9	16: PD13	20: PF1	24: PF5	28: PA1	
	1: PB11	5: PB15	9: PC9	13: PD10	17: PD14	21: PF2	25: PF6	29: PA2	USART1 Request
US1_RTS	2: PB12	6: PC6	10: PC10	14: PD11	18: PD15	22: PF3	26: PF7	30: PA3	To Send hardware flow control output.
	3: PB13	7: PC7	11: PC11	15: PD12	19: PF0	23: PF4	27: PA0	31: PA4	
	0: PA1	4: PA5	8: PB14	12: PC8	16: PD9	20: PD13	24: PF1	28: PF5	USART1 Asynchro-
	1: PA2	5: PB11	9: PB15	13: PC9	17: PD10	21: PD14	25: PF2	29: PF6	nous Receive.
US1_RX	2: PA3	6: PB12	10: PC6	14: PC10	18: PD11	22: PD15	26: PF3	30: PF7	USART1 Synchro- nous mode Master Input / Slave Out-
	3: PA4	7: PB13	11: PC7	15: PC11	19: PD12	23: PF0	27: PF4	31: PA0	put (MISO).

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PA0	4: PA4	8: PB13	12: PC7	16: PC11	20: PD12	24: PF0	28: PF4	USART1 Asynchro-
	1: PA1	5: PA5	9: PB14	13: PC8	17: PD9	21: PD13	25: PF1	29: PF5	nous Transmit. Al- so used as receive
	2: PA2	6: PB11	10: PB15	14: PC9	18: PD10	22: PD14	26: PF2	30: PF6	input in half duplex communication.
US1_TX	3: PA3	7: PB12	11: PC6	15: PC10	19: PD11	23: PD15	27: PF3	31: PF7	USART1 Synchro- nous mode Master Output / Slave In- put (MOSI).
				12: PF0	16: PF5			30: PA5	
US2_CLK				13: PF1	17: PF6				USART2 clock in-
				14: PF3	18: PF7				put / output.
				15: PF4					
			11: PF0	12: PF1	16: PF6			29: PA5	
US2_CS				13: PF3	17: PF7				USART2 chip se-
032_03				14: PF4					lect input / output.
				15: PF5					
			10: PF0	12: PF3	16: PF7			28: PA5	
US2_CTS			11: PF1	13: PF4					USART2 Clear To Send hardware
002_010				14: PF5					flow control input.
				15: PF6					
			9: PF0	12: PF4			27: PA5		
US2_RTS			10: PF1	13: PF5					USART2 Request To Send hardware
002_1110			11: PF3	14: PF6					flow control output.
				15: PF7					
				13: PF0	16: PF4			31: PA5	USART2 Asynchro- nous Receive.
				14: PF1	17: PF5				
US2_RX				15: PF3	18: PF6				USART2 Synchro- nous mode Master
					19: PF7				Input / Slave Out- put (MISO).
	0: PA5			14: PF0	16: PF3	20: PF7			USART2 Asynchro- nous Transmit. Al-
				15: PF1	17: PF4				so used as receive
US2_TX					18: PF5				input in half duplex communication.
					19: PF6				USART2 Synchro- nous mode Master Output / Slave In- put (MOSI).
VDAC0_EXT	0: PA1								Digital to analog converter VDAC0 external reference input pin.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
VDAC0_OUT0 / OPA0_OUT	0: PA3								Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0AL T / OPA0_OUT- ALT	0: PA5 1: PD13 2: PD15								Digital to Analog Converter DAC0 al- ternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PD14								Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1AL T / OPA1_OUT- ALT	0: PD12 1: PA2 2: PA4								Digital to Analog Converter DAC0 al- ternative output for channel 1.
	0: PA0	4: PA4		15: PB11	16: PB12		26: PC6	28: PC8	
WTIM0 CC0	1: PA1	5: PA5			17: PB13		27: PC7	29: PC9	Wide timer 0 Cap- ture Compare in-
	2: PA2				18: PB14			30: PC10	put / output channel 0.
	3: PA3				19: PB15			31: PC11	
	0: PA2			13: PB11	16: PB14		24: PC6	28: PC10	
WTIM0_CC1	1: PA3			14: PB12	17: PB15		25: PC7	29: PC11	Wide timer 0 Cap- ture Compare in-
	2: PA4			15: PB13			26: PC8	31: PD9	put / output channel 1.
	3: PA5						27: PC9		
	0: PA4		11: PB11	12: PB12		22: PC6	24: PC8	29: PD9	
	1: PA5			13: PB13		23: PC7	25: PC9	30: PD10	Wide timer 0 Cap- ture Compare in-
WTIM0_CC2				14: PB14			26: PC10	31: PD11	put / output channel 2.
				15: PB15			27: PC11		
		7: PB11	8: PB12		18: PC6	20: PC8	25: PD9	28: PD12	
WTIM0_CDTI0			9: PB13		19: PC7	21: PC9	26: PD10	29: PD13	Wide timer 0 Com- plimentary Dead
			10: PB14			22: PC10	27: PD11	30: PD14	Time Insertion channel 0.
			11: PB15			23: PC11		31: PD15	
		5: PB11	8: PB14		16: PC6	20: PC10	24: PD10	28: PD14	
WTIM0_CDTI1		6: PB12	9: PB15		17: PC7	21: PC11	25: PD11	29: PD15	Wide timer 0 Com- plimentary Dead
		7: PB13			18: PC8	23: PD9	26: PD12	30: PF0	Time Insertion channel 1.
					19: PC9		27: PD13	31: PF1	
	3: PB11	4: PB12		14: PC6	16: PC8	21: PD9	24: PD12	28: PF0	
		5: PB13		15: PC7	17: PC9	22: PD10	25: PD13	29: PF1	Wide timer 0 Com- plimentary Dead
WTIM0_CDTI2		6: PB14			18: PC10	23: PD11	26: PD14	30: PF2	Time Insertion channel 2.
		7: PB15			19: PC11		27: PD15	31: PF3	

Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions selected on that pin (i.e. another alternate function enabled to the same pin inadvertently).

Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to the pins for timing-critical signals.

The following table lists the alternate functions and locations with special priority.

Table 6.4. Alternate Functionality Priority

Alternate Functionality	Location	Priority
CMU_CLKI0	1: PF7	High Speed

6.4 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.2 APORT Connection Diagram on page 104 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

ZGM130S Z-Wave 700 SiP Module Data Sheet

Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		5A3		1A1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PAO		PD14		PD12		PD10		

Table 6.5. ACMP0 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

Table 6.6. ACMP1 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		90d						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

Table 6.7. ADC0 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
CE	хт																																
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		194						PC11		PC9		PC7							
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
CE	хт_	SEN	ISE																														
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		9CG						
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

Table 6.8. CSEN Bus and Pin Mapping

Table 6.9. IDAC0 Bus and Pin Mapping

PA2 CH11 PA2 CH10 CH9 PA0 CH8	4 0 2	14 0 5																															
N Q	2 0 4	2 0 4																															
N 0	0 0 4	7 0 7																															
AO	14 0	0 4																															
AO	0 4	14 0																															
CH7	4	4																															
	4	4																															
PD12 CH4	12																																
12	12	CH3																															
10	1 12	10																															
10	10	10																															
Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO
---------	-------	----------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-----	-----	------	------	------	------	------	------	-----	-----
OP	A0_	N																															
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
OP	A0_	<u>P</u>																															
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	

Table 6.10. VDAC0 / OPA Bus and Pin Mapping

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
	PA1_		0	U	0	0	0			0	0	0	0	0	U	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PAO		PD14		PD12		PD10		
OP	A1_	<u></u> P																															
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
OP	A2_	N																															
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

																					~ *												
Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0
	PA2_																																
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
OP	PA2_	P																															
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
VD	ACO	0_0	UT0	/ 0	PA0	_οι	JT	1	1		1	1		1														1					
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11													-	PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

ZGM130S Z-Wave 700 SiP Module Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СНО
VD	AC	0_0	JT1	/ 0	PA1	_0U	JT																										
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

7. LGA64 Package Specifications

Refer to AN1223 for LGA Manufacturing Guidance.

7.1 LGA64 Package Dimensions

Figure 7.1. LGA64 Package Drawing

Dimension	Min	Тур	Мах									
A	1.12	1.21	1.30									
A1	0.17	0.21	0.25									
b	0.20	0.25	0.30									
D	9.00 BSC											
е	0.50 BSC											
E	9.00 BSC											
L	0.30	0.35	0.40									
L1	0.10	0.15	0.20									
ааа		0.10										
bbb	0.10											
ссс	0.10											
ddd		0.10										
Neter												

Table 7.1. LGA64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 7.2. LGA64 PCB Land Pattern Drawing

Table 7.2.	LGA64 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Тур
C1	8.50
C2	8.50
X	0.30
Y	0.35

Note:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
- 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60µm minimum, all the way around the pad.
- 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Note: Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling.

Figure 7.3. LGA64 Package Marking

The package marking consists of:

- PPPPPPPPPP The part number designation.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- CC Country of Origin

8. Certifications

ZGM130S modules are not pre-certified and the end product containing this module should be certified for the respective regulatory body. Refer to AN1048 for detailed information related to Regulatory Certifications.

9. Revision History

Revision 1.3

June, 2022

- Added timing specifications for RESETn low time in Table 4.19 General-Purpose I/O (GPIO) on page 36.
- Removed BIASPROG = 1, FULLBIAS = 0 specifications from Table 4.22 Analog Comparator (ACMP) on page 41.
- Added debug information in 5.1 Typical ZGM130S Connections.
- Corrected the metal pad dimension in Table 7.2 LGA64 PCB Land Pattern Dimensions on page 116
- Added a note to Table 7.2 LGA64 PCB Land Pattern Dimensions on page 116.
- Removed all references to RFSENSE.
- Removed all references to BOOT_TX and BOOT_RX.

Revision 1.2

December 2020

- · Updated maximum TX power to 14 dBm.
- In 4.1.4.2 Current Consumption Using Radio 3.3 V with DC-DC updated current consumptions for 912 MHz O-QPSK
- In 4.1.8.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band
 - · Corrected FCC reference for non-restricted bands in :
 - SPURHARM_FCC_14
 - SPUROOB_FCC_14
 - Corrected FCC reference for PSD
- · Added 4.1.8.2 Sub-GHz RF Transmitter characteristics for 915 MHz Band, +14 dBm and other 912 MHz radio specs
- In 4.1.8.3 Sub-GHz RF Receiver Characteristics for 915 MHz Band, added sensitivity, image rejection, and blocking sensitivity for 912 MHz OQPSK PHY.
- Added reference to AN1223 in 7. LGA64 Package Specifications section.
- In 7.3 LGA64 Package Marking added package marking figure.
- Added 8. Certifications section.

Revision 1.1

October 2019

- In the front page block diagram, updated the lowest energy mode for LETIMER.
- Updated 3.6.4 Low Energy Timer (LETIMER) lowest energy mode.
- In 2. Ordering Information, updated ordering part numbers.

Revision 1.0

May 2019

- Added bullet about optional SAW filter to front page and feature lists.
- Table 4.12 Sub-GHz RF Transmitter characteristics for 868 MHz Band on page 30 : Updated POUT_{MAX} footnote with details about SAW insertion loss.
- Table 4.9 Sub-GHz RF Transmitter characteristics for 915 MHz Band on page 25 : Updated POUT_{MAX} footnote with details about SAW insertion loss.

Revision 0.5

January 2019

Updated electrical characteristics with latest characterization results.

Revision 0.2

December 2018

- Crystal frequency changed to 39 MHz.
- · Updated electrical characteristics with latest characterization estimates.
- Table 4.9 Sub-GHz RF Transmitter characteristics for 915 MHz Band on page 25: PSD conditions updated to specify PSD at each data rate.
- Table 6.3 Alternate Functionality Overview on page 92: Table formatting update.

Revision 0.1

August 2018

· Initial Release.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/IoT

www.silabs.com/simplicity

www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs product shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Lab

Trademark Information

Silicon Laboratories Inc.[®], Silicon Laboratories[®], Silicon Labs[®], SiLabs[®] and the Silicon Labs logo[®], Bluegiga[®], Bluegiga Logo[®], EFM[®], EFM32[®], EFR, Ember[®], Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals[®], WiSeConnect, n-Link, ThreadArch[®], EZLink[®], EZRadio[®], EZRadio[®], Gecko[®], Gecko OS, Gecko OS Studio, Precision32[®], Simplicity Studio[®], Telegesis, the Telegesis Logo[®], USBXpress[®], Zentri, the Zentri logo and Zentri DMS, Z-Wave[®], and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

www.silabs.com