

TSV611, TSV612

Rail-to-rail input/output 11 µA, 120 kHz CMOS operational amplifiers

Preliminary data

Features

- Rail-to-rail input and output
- Low power consumption: 11 µA typ at 5 V
- Low supply voltage: 1.5 to 5.5 V
- Gain bandwidth product: 120 kHz typ
- Unity gain stable
- Low input offset voltage: 1 mV max (A version)
- Low input bias current: 1 pA typ
- Temperature range: -40 to +85° C

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV61x family of single and dual operational amplifiers offers low voltage, low power operation and rail-to-rail input and output.

The devices also feature an ultra-low input bias current as well as a low input offset voltage.

The TSV61x have a gain bandwidth product of 120 kHz while consuming only 11 μA at 5 V.

These features make the TSV61x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage (3)	V _{CC-} -0.2 to V _{CC+} +0.2	V
T _{stg}	Storage temperature	-65 to +150	°C
	Thermal resistance junction to ambient ⁽⁴⁾⁽⁵⁾		
	SC70-5	205	
R _{thja}	SOT23-5	250	°C/W
	MiniSO-8	250	
	SO-8	125	
Тj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁶⁾	4	kV
ESD	MM: machine model ⁽⁷⁾	300	V
	CDM: charged device model ⁽⁸⁾	1.5	kV
	Latch-up immunity	200	mA

Table 1. Absolute maximum ratings

1. All voltage values, except differential voltage are with respect to network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

3. Vcc-Vin must not exceed 6 V.

- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. Rth are typical values.
- 6. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
 pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
 combinations with other pins floating.
- 8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 2.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	V _{CC-} -0.1 to V _{CC+} +0.1	V
T _{oper}	Operating free air temperature range	-40 to +85	°C

2 Electrical characteristics

Table 3.Electrical characteristics at $V_{CC+} = +1.8 V$
with $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, and R_L connected to $V_{CC}/2$
(unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance			•	•	
V _{io}	Offset voltage	TSV61x TSV61xA			5 1	mV
V IO	Unset voltage	$T_{min.} < T_{op} < T_{max.} TSV61x$ $T_{min.} < T_{op} < T_{max}TSV61xA$			6 2	1110
$\mathrm{DV}_{\mathrm{io}}$	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current $(V_{out} = V_{cc}/2)$			1	10 100	pA
		T _{min.} < T _{op} < T _{max.}		1	100	pA pA
I _{ib}	Input bias current (V _{out} = V _{cc} /2)	T _{min.} < T _{op} < T _{max.}		1	100	рА pA
	Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	55			dB
CMR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min.} < T _{op} < T _{max.}				dB
A _{vd}	Large signal voltage gain	$R_L = 10 \text{ k}\Omega$ Vout = 0.5 V to 1.3 V	tbd	87		dB
va		T _{min.} < T _{op} < T _{max.}	tbd			dB
V _{OH}	High level output voltage	$R_L = 10 k\Omega$ T _{min.} < T _{op} < T _{max.}	35 50	3		mV
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min.} < T_{op} < T_{max.}$		3	35 50	mV
	Isink	$V_o = 1.8 V$ $T_{min.} < T_{op} < T_{max.}$	5 5	10		
I _{out}	Isource	$V_o = 0 V$ $T_{min.} < T_{op} < T_{max.}$	5 5	10		mA
	Supply current (per	No load, $V_{out} = V_{cc}/2$		8	12	μA
I _{CC}	operator)	T _{min.} < T _{op} < T _{max.}			12	μA
AC perfo	ormance		1		1	1
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF},$ f = 100 kHz, Av = 1		105		kHz
F_{u}	Unity gain frequency	$R_L = 10$ kΩ, $C_L = 20$ pF, Av = 1		100		kHz
φm	Phase margin	$R_{L} = 10 \text{ k}\Omega, C_{L} = 20 \text{ pF},$ Av = 1		45		Degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF},$ Av = 1		tbd		dB

Table 3.Electrical characteristics at $V_{CC+} = +1.8 V$
with $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, and R_L connected to $V_{CC}/2$
(unless otherwise specified) (continued)

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
SR	Slew rate	R _L = 10 kΩ, C _L = 20 pF Av = 1, TSV61x		0.03		V/µs
e _n	Equivalent input noise voltage	f = 1 kHz		156		<u>nV</u> √Hz
THD+e _n	Total harmonic distortion	tbd		tbd		%

Symbol	Parameter		Min.	Тур.	Max.	Unit
DC perfo	ormance			1		
V	Offset voltage	TSV61x TSV61xA			5 1	mV
V _{io}	Onset voltage	T _{min} <t<sub>op<t<sub>max TSV61x T_{min}<t<sub>op<t<sub>maxTSV61xA</t<sub></t<sub></t<sub></t<sub>			6 2	
DV_{io}	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	T _{min.} < T _{op} < T _{max.}		1 1	10 100	pA pA
				1	10	pА
I _{ib}	Input bias current	T _{min.} < T _{op} < T _{max.}		1	100	pА
CMR	Common mode rejection ratio 20 log (ΔV _{ic} /ΔV _{io})	0 V to 3.3 V, $V_{out} = 1.75$ V	60			dB
A _{vd}	Large signal voltage gain	$R_L = 10 \text{ k}\Omega$ Vout = 0.5 V to 2.8 V	tbd	93		dB
V _{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min.} < T_{op} < T_{max.}$	35 50	3		mV
V _{OL}	Low level output voltage			3	35 50	mV
I	Isink	$V_o = 5 V$ $T_{min.} < T_{op} < T_{max.}$	15	20		m۸
l _{out}	Isource	V _o = 0 V T _{min.} < T _{op} < T _{max.}	15	20		mA
laa	Supply current (per	No load, V _{out} = 2.5 V		10	14	μA
I _{CC}	operator)	T _{min.} < T _{op} < T _{max.}			14	μA
AC perfo	ormance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF},$ f = 100 kHz, Av = 1		110		kHz
Fu	Unity gain frequency	$ \begin{array}{l} R_{L} = 10 \; k\Omega, \; \; C_{L} = 20 \; pF, \\ Av = 1 \end{array} $		100		kHz
φm	Phase margin	$R_{L} = 10 \text{ k}\Omega, C_{L} = 20 \text{ pF},$ Av = 1		tbd		Degrees
G _m	Gain margin	$ R_L = 10 \text{ k}\Omega, \ \ C_L = 20 \text{ pF}, \\ Av = 1 $		tbd		dB
SR	Slew rate	$ \begin{array}{l} R_{L} = 10 \; k\Omega \; C_{L} = \; 20 \; pF, \\ A_{V} = 1 \end{array} $		0.032		V/µs

Table 4. $V_{CC+} = +3.3 \text{ V}, V_{CC-} = 0 \text{ V}, V_{icm} = V_{CC}/2, T_{amb} = 25^{\circ} \text{ C},$ R_L connected to V_{CC}/2 (unless otherwise specified)

	$n_{\rm L}$ connected to $V_{\rm CC}/2$ (unless otherwise specified) (continued)								
Symbol	Parameter		Min.	Тур.	Max.	Unit			
e _n	Equivalent input noise voltage	f = 1 kHz		156		$\frac{nV}{\sqrt{Hz}}$			
THD	Total harmonic distortion	tbd		tbd		%			

Table 4. $V_{CC+} = +3.3 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} \text{ C}$, R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter		Min.	Тур.	Max.	Unit
DC perfo	ormance	1				
V.	Offset voltage	TSV61x TSV61xA			5 1	mV
V _{io}	Chisel vollage	T _{min} <t<sub>op<t<sub>max TSV61x T_{min}<t<sub>op<t<sub>maxTSV61xA</t<sub></t<sub></t<sub></t<sub>			6 2	
$\mathrm{DV}_{\mathrm{io}}$	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current			1	10	pА
' 10	input onset current	T _{min.} < T _{op} < T _{max.}		1	100	pА
I _{ib}	Input bias current	T _{min.} < T _{op} < T _{max.}		1	10 100	рА pA
CMR	Common mode rejection ratio 20 log (ΔV _{ic} /ΔV _{io})	0 V to 5 V, $V_{out} = 2.5 V$	60			dB
SVR	Supply voltage rejection ratio 20 log ($\Delta V_{cc}/\Delta V_{io}$)	Vcc = 1.8 to 5 V	75	96		dB
A _{vd}	Large signal voltage gain	$R_L = 10$ kΩ, Vout = 0.5 V to 4.5 V	tbd	96		dB
V _{OH}	High level output voltage	R_L = 10 kΩ T _{min.} < T _{op} < T _{max.}	35 50	3		mV
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min.} < T_{op} < T_{max.}$		3	35 50	mV
I	Isink	$V_0 = 5 V$	tbd	20		m 4
I _{out}	Isource	$V_0 = 0 V$	tbd	20		mA
I _{CC}	Supply current (per	No load, $V_{out} = 2.5 V$		11	14	μA
	operator)	T _{min.} < T _{op} < T _{max.}			tbd	μA
AC perfo	ormance					
GBP	Gain bandwidth product	$R_L = 10 k\Omega$, $C_L = 20 pF$, f = 100 kHz, Av = 1		120		kHz
Fu	Unity gain frequency	$R_{L} = 10 \text{ k}\Omega, C_{L} = 20 \text{ pF},$ Av = 1		109		kHz
φm	Phase margin	$ R_L = 10 \text{ k}\Omega, \ \ C_L = 20 \text{ pF}, \\ Av = 1 $		53		Degrees
G _m	Gain margin	$ R_L = 10 \text{ k}\Omega, \ \ C_L = 20 \text{ pF}, \\ Av = 1 $		14		dB
SR	Slew rate	$ \begin{array}{l} R_{L} = 10 \; k\Omega \; C_{L} = \; 20 \; pF, \\ A_{V} = 1 \end{array} $		0.034		V/µs

Table 5. $V_{CC+} = +5 V$, $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz		156		<u>nV</u> √Hz
THD	Total harmonic distortion	fin = 1 kHz, Av = 1, Vout = 2 Vpp		0.1		%

Table 5. $V_{CC+} = +5 V$, $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 SOT23-5 package information

Figure 1. SOT23-5L package mechanical drawing

Table 6. SOT23-5L package mechanical data

	Dimensions						
Ref.	Millimeters						
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.013	0.015	0.019	
С	0.09	0.15	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
E	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.013	0.023	
К	0 degrees		10 degrees				

3.2 SC70-5 (or SOT323-5) package information

Figure 2. SC70-5 (or SOT323-5) package mechanical drawing

Т	able 7.	SC70-5 (or SOT323-5) package mechanical data

			Dimer	nsions			
Ref		Millimeters			Inches		
	Min	Тур	Max	Min	Тур	Max	
А	0.80		1.10	0.315		0.043	
A1			0.10			0.004	
A2	0.80	0.90	1.00	0.315	0.035	0.039	
b	0.15		0.30	0.006		0.012	
с	0.10		0.22	0.004		0.009	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65			0.025		
e1		1.30			0.051		
L	0.26	0.36	0.46	0.010	0.014	0.018	
<	0°		8°				

3.3 SO-8 package information

Table 8. SO-8 package mechanical data

			Dime	nsions		
Ref.		Millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1 °		8°	1 °		8°
CCC			0.10			0.004

3.4 MiniSO-8 package information

Table 9. MiniSO-8 package mechanical data

Table 9.		ickaye mech						
Ref.	Dimensions							
		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.1			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
Е	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
CCC			0.10			0.004		

Doc ID 15768 Rev 1

4 Ordering information

Order code	Temperature range	Package	Packing	Marking
TSV611ILT		SOT23-5	Tape & reel	K12
TSV611AILT				K11
TSV611ICT		SC70-5		K12
TSV611AICT	-40° C to 85° C			K11
TSV612ID/DT	-40 C 10 85 C	SO-8	Tube & Tape & reel	V612I
TSV612AID/DT				V612AI
TSV612IST		MSO-8	Tape & reel	K113
TSV612AIST				K115

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
28-May-2009	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15768 Rev 1

