

TS512

Precision dual operational amplifier

Features

- Low input offset voltage: 500 µV max.
- Low power consumption
- Short-circuit protection
- Low distortion, low noise
- High gain-bandwidth product: 3 MHz
- High channel separation
- ESD protection 2 kV
- Macromodel included in this specification

Description

The TS512 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation in voltage follower in spite of its high gain-bandwidth product.

The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (such as active filtering).

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit		
V _{CC}	Supply voltage	±18	V		
V _{in}	Input voltage	±V _{CC}			
V _{id}	Differential input voltage	±(V _{CC} - 1)			
R _{thja}	Thermal resistance junction to ambient ⁽¹⁾ DIP8 SO-8	85 125	°C/W		
R _{thjc}	Thermal resistance junction to case ⁽¹⁾ DIP8 SO-8	41 40	°C/W		
Т _ј	Junction temperature	+ 150	°C		
T _{stg}	Storage temperature range	-65 to +150	°C		
	HBM: human body model ⁽²⁾	2	kV		
ESD	MM: machine model ⁽³⁾	200	V		
	CDM: charged device model ⁽⁴⁾	1.5	kV		

Table 1. Absolute maximum ratings

1. Short-circuits can cause excessive heating and destructive dissipation.R_{th} are typical values.

2. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

3. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	
V _{CC}	Supply voltage ⁽¹⁾	6 to 30V	V
V _{icm}	Common mode input voltage range	V_{DD} +1.5 to V_{CC} -1.5	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

1. Value with respect to V_{DD} pin.

2 Schematic diagram

Figure 1. Schematic diagram (1/2 TS512)

3 Electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current (per operator) T _{min} ≤ T _{amb} ≤T _{max}		0.5	0.6 0.75	mA
I _{ib}	Input bias current T _{min} ≤ T _{amb} ≤T _{max}		50	150 300	nA
R _{in}	Input resistance, f = 1kHz		1		MΩ
V _{io}	Input offset voltage TS512 TS512A $T_{min} \leq T_{amb} \leq T_{max}$ TS512 TS512A		0.5	2.5 0.5 3.5 1.5	mV
ΔV_{io}	Input offset voltage drift T _{min} ≤ T _{amb} ≤ T _{max}		2		µV/°C
I _{io}	Input offset current T _{min} ≤ T _{amb} ≤ T _{max}		5	20 40	nA
ΔI_{io}	Input offset current drift T _{min} ≤ T _{amb} ≤ T _{max}		0.08		<u>nA</u> °C
I _{os}	Output short-circuit current		23		mA
A _{vd}	Large signal voltage gain $R_L = 2k\Omega$, $V_{CC} = \pm 15V$, $T_{min} \le T_{amb} \le T_{max}$ $V_{CC} = \pm 4V$	90	100 95		dB
GBP	Gain-bandwidth product, f = 100kHz	1.8	3		MHz
e _n	Equivalent input noise voltage, f = 1kHz Rs = 50Ω Rs = $1k\Omega$ Rs = $10k\Omega$		8 10 18		<u>nV</u> √Hz
THD	Total harmonic distortion $A_v = 20$ dB, $R_L = 2k\Omega$ $V_o = 2V_{pp}$, f = 1kHz		0.03		%
±V _{opp}	Output voltage swing $R_L = 2k\Omega$, $V_{CC} = \pm 15V$, $T_{min} \le T_{amb} \le T_{max}$ $V_{CC} = \pm 4V$	±13	±3		V
V _{opp}	Large signal voltage swing R _L = 10kΩ, f = 10kHz		28		V _{pp}
SR	Slew rate Unity gain, $R_L = 2k\Omega$	0.8	1.5		V/µs
CMR	Common mode rejection ratio V _{ic} = ±10V	90			dB

Table 3. $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Table 5.	Table 5. $V_{CC} = \pm 15V$, $T_{amb} = 25$ C (differs otherwise specified)						
Symbol	Parameter	Min.	Тур.	Max.	Unit		
SVR	Supply voltage rejection ratio	90			dB		
V _{o1} /V _{o2}	Channel separation, f = 1kHz		120		dB		

Table 3. $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Figure 2.

V_{io} distribution at V_{CC} = ±15V and Figure 3. V_{io} distribution at V_{CC} = ±15V and T= 25°C T= 125°C

Figure 5.

Figure 4. Input offset voltage vs. input common mode voltage at V_{CC}= 10V

Figure 6. Supply current (per operator) vs. supply voltage at $V_{icm} = V_{CC}/2$

Input offset voltage vs. input

common mode voltage at V_{CC}= 30V

Figure 7. Supply current (per operator) vs. input common mode voltage at V_{CC} = 6V

5

Figure 8. Supply current (per operator) vs. input common mode voltage at V_{CC} = 10V

Figure 10. Output current vs. supply voltage at Figure 11. Output current vs. output voltage at $V_{icm} = V_{CC}/2$ $V_{CC} = 6V$

Figure 12. Output current vs. output voltage at Figure 13. Output current vs. output voltage at $V_{CC} = 10V$ $V_{CC} = 30V$

Figure 14.Voltage gain and phase for different Figure 15.
capacitive loads at V_{CC} = 6V,
 V_{icm} = 3V and T= 25°CVoltage gain and phase for different
capacitive loads at V_{CC} = 10V,
 V_{icm} = 5V and T= 25°C

Figure 16. Voltage gain and phase for different Figure 17. capacitive loads at V_{CC} = 30V, V_{icm} = 15V and T= 25°C

5

Phase margin vs. output current, at Figure 21. Phase margin vs. output current, at Figure 20. V_{CC} = 6V, V_{icm} = 3V and T= 25°C

Figure 22. Phase margin vs. output current, at V_{CC} = 30V, V_{icm} = 15V and T= 25°C

 $V_{CC}\text{=}$ 10V, $V_{icm}\text{=}$ 5V and T= 25°C

4 Macromodels

4.1 Important note concerning this macromodel

Please consider the following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (V_{CC} , temperature, for example) or even worse, outside of the device operating conditions (V_{CC} , V_{icm} , for example), is not reliable in any way.

4.2 Macromodel code

```
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS512 1 3 2 4 5
.MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F
* INPUT STAGE
CIP 2 5 1.00000E-12
CIN 1 5 1.00000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 1.061852E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.00000E-05
CPS 11 15 12.47E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 1.500000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.500000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
```


FIBP 2 5 VOFN 1.000000E-02 FIBN 5 1 VOFP 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 9.000000E+02 FIN 5 19 VOFN 9.000000E+02 RG1 19 5 1.727221E+06 RG2 19 4 1.727221E+06 CC 19 5 6.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.521739E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 6.521739E+03 VINM 5 27 1.500000E+02 GCOMP 5 4 4 5 6.485084E-04 RPM1 5 80 1E+06 RPM2 4 80 1E+06 GAVPH 5 82 19 80 2.59E-03 RAVPHGH 82 4 771 RAVPHGB 82 5 771 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.331E-09 CAVPHB 5 84 0.331E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 6.498455E+01 COUT 3 5 1.00000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 1.742230E+00 DON 24 19 MDTH 400E-12 VON 24 5 1.742230E+00 .ENDS

Table 4. $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
V _{io}		0	mV
A _{vd}	$R_L = 2k\Omega$	100	V/mV
I _{CC}	No load, per operator	350	μA
V _{icm}		-13.4 to 14	V
V _{OH}	$R_L = 2k\Omega$	+14	V
V _{OL}	$R_L = 2k\Omega$	-14	V
I _{sink}	$V_0 = 0V$	27.5	mA
I _{source}	$V_0 = 0V$	27.5	mA
GBP	$R_L = 2k\Omega$, $C_L = 100pF$	2.5	MHz
SR	$R_L = 2k\Omega$	1.4	V/μs
Øm	$R_L = 2k\Omega$, $C_L = 100pF$	55	Degrees

5 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

Figure 23. DIP8 package mechanical drawing

Table 5.DIP8 package mechanical data

			Dimer	nsions		
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
с	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

Figure 24. SO-8 package mechanical drawing

Table 6. SO-8 package mechanical data

	Dimensions					
Ref.	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
с	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	1°		8°	1°		8°
CCC			0.10			0.004

6 Ordering information

Table 7. Order codes

Order code	Temperature range	Package	Packaging	Marking
TS512IN		DIP8 Tube		512IN
TS512AIN		DIFO	lube	512AIN
TS512ID TS512IDT	-40°C, + 125°C -	SO-8	Tube or Tape & reel	5121
TS512AID-DT			Tape & Teel	512AI
TS512IYD ⁽¹⁾ TS512IYDT ⁽¹⁾		SO-8	Tube or	512IY
TS512AIYD ⁽¹⁾ TS512AIYDT ⁽¹⁾		(Automotive grade)	Tape & reel	512AIY

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

7 Revision history

Table 8.	Document	revision	history
----------	----------	----------	---------

Date	Revision	Changes	
21-Nov-2001	1	Initial release.	
23-Jun-2005	2	PPAP references inserted in the datasheet, see <i>Table 7: Order codes</i> .	
5-May-2008	3	AC and DC performance characteristics curves added for V_{CC} = 6V, V_{CC} = 10V and V_{CC} = 30V. Modified I _{CC} typ, added parameters over temperature range in electrical characteristics table. Corrected macromodel information.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

