TOSHIBA Photocoupler GaAs Ired & Photo-Transistor

TLP421

Office Equipment Household Appliances Solid State Relays Switching Power Supplies Various Controllers Signal Transmission Between Different Voltage Circuits

The TOSHIBA TLP421 consists of a silicone photo-transistor optically coupled to a gallium arsenide infrared emitting diode in a four lead plastic DIP (DIP4) with having high isolation voltage (AC: 5kV_{RMS} (min)).

- Collector-emitter voltage: 80V (min.)
- Current transfer ratio: 50% (min.) Rank GB: 100% (min.)
- Isolation voltage: 5000Vrms (min.)
- UL recognized: UL1577
- BSI approved: BS EN60065: 1994
 - Approved no.8411
 - BS EN60950: 1992
 - Approved no.8412
- SEMKO approved: EN60065, EN60950, EN60335 Approved no.9910249/01

Weight: 0.26 g

Pin Configurations (top view)

1 : Anode

- 2 : Cathode
- 3 : Emitter
- 4 : Collector

• Option(D4)type

TÜV approved: DIN VDE0884 Approved no.R9950202

Maximum operating insulation voltage: 890V_{PK} Maximu permissible overvoltage: 8000V_{PK}

(Note): When a VDE0884 approved type is needed, please designate the "Option(D4)"

Making the VDE applocation: DIN VDE0884 $\,$

• Construction mechanical rating

	7.62mm Pich Typical Type	10.16mm Pich TLPxxxF Type
Creepage distance	7.0mm(min)	8.0mm(min)
Clearance	7.0mm(min)	8.0mm(min)
Insulation thickness	0.4mm(min)	0.4mm(min)

Current Transfer Ratio

Туре	Classi– fication (*1)	Current Transfer Ratio (%) (I _C / I _F)I _F = 5mA, V _{CE} = 5V, Ta = 25°CMinMax		Marking Of Classification
	(None)	50	600	Blank, Y, Y+, G, G+, B, B+, GB
	Rank Y	Rank Y 50 150		Y, Y+
TLP421	Rank GR	100	300	G, G+
	Rank BL	200	600	B, B+
	Rank GB	100	600	G, G+, B, B+, GB

(*1): Ex. rank GB: TLP421 (GB)

(Note): Application type name for certification test, please use standard product type name, i. e. TLP421 (GB): TLP421

Maximum Ratings (Ta = 25°C)

	Characteristic		Stmbol	Rating	Unit
	Forward current		١ _F	60	mA
	Forward current derating(Ta ≥ 39°C)		ΔI _F / °C	-0.7	mA / °C
	Pulse forward current	(Note 2)	I _{FP}	1	А
LED	Power dissipation		PD	100	mW
_	Power dissipation derating		ΔP _D / °C	-1.0	mW / °C
	Reverse voltage		V _R	5	V
	Junction temperature		Tj	125	°C
	Collector-emitter voltage		V _{CEO}	80	V
	Emitter-collector voltage		V _{ECO}	7	V
tor	Collector current		Ι _C	50	mA
Detector	Power dissipation(single circuit)		P _C	150	mW
	Power dissipation derating $(Ta \ge 25^{\circ}C)(single circuit)$		ΔΡ _C / °C	-1.5	mW / °C
	Junction temperature		Тj	125	°C
Ope	rating temperature range		T _{opr}	-55~100	°C
Stor	age temperature range		T _{stg}	-55~125	°C
Lea	d soldering temperature (10s)		T _{sol}	260	°C
Tota	al package power dissipation		PT	250	mW
	Il package power dissipation derating ≥ 25°C)		ΔP _T / °C	-2.5	mW / °C
Isola	ation voltage	(Note 3)	BV _S	5000	V _{rms}

(Note 2): 100µs pulse, 100Hz frequency

(Note 3): AC, 1 min., R.H.≤ 60%. Apply voltage to LED pin and detector pin together.

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур.	Max	Unit
Supply voltage	V _{CC}	_	5	24	V
Forward current	١ _F	_	16	25	mA
Collector current	Ι _C	_	1	10	mA
Operating temperature	T _{opr}	-25	_	85	°C

Individual Electrical Characteristics (Ta = 25°C)

	Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
	Forward voltage	V _F	I _F = 10 mA	1.0	1.2	1.3	V
LED	Reverse current	I _R	V _R = 5 V	_	_	10	μA
	Capacitance	CT	V = 0, f = 1 MHz		30	_	pF
	Collector–emitter breakdown voltage	V _(BR) CEO	I _C = 0.5 mA	80	Ι	Ι	V
r	Emitter-collector breakdown voltage	V _{(BR) ECO}	I _E = 0.1 mA	7	Ι	Ι	V
Detector	Detecto		V _{CE} = 24 V (ambient light below 1000 {x)	_	0.01 (0.1)	0.1 (10)	μA
	Collector dark current	ID(ICEO)	V _{CE} = 24 V (ambient light Ta = 85°C below 1000 ℓx)	_	0.6 (1)	50 (50)	μA
	Capacitance (collector to emitter)	C _{CE}	V = 0, f = 1 MHz	_	10	_	pF

Coupled Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition		MIn	Тур.	Max	Unit
Current transfer ratio	nsfer ratio I _C / I _F	I_{C} / I_{F} $I_{F} = 5 \text{ mA}, V_{CE} = 5 \text{ V}$ Rank GI		50	_	600	%
			Rank GB	100	_	600	70
Saturated CTR	I _C / I _{F (sat)}	$I_{C} / I_{F (sat)}$ IF = 1 mA, V_{CE} = 0.4 V Rank GB	_	60	-	%	
Saturated CTR			Rank GB	30	_	_	70
		I _C = 2.4 mA, I _F = 8 mA		_	_	0.4	
Collector–emitter saturation voltage		I _C = 0.2 mA, I _F = 1 mA			0.2		V
voltage			Rank GB		_	0.4	

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Capacitance (input to output)	CS	V _S = 0, f = 1 MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500 V	1×10 ¹²	10 ¹⁴	_	Ω
Isolation voltage	BVS	AC, 1 minute	5000	_	_	V
		AC, 1 second, in oil	_	10000	_	V _{rms}
		DC, 1 minute, in oil		10000	_	Vdc

Switching Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		_	2	_	
Fall time	t _f	V _{CC} = 10 V, I _C = 2 mA	_	3	_	
Turn–on time	t _{on}	$R_L = 100\Omega$	_	3	_	μs
Turn–off time	t _{off}		_	3	_	
Turn–on time	t _{ON}		_	2	_	
Storage time	ts	$R_L = 1.9 kΩ$ (Fig.1) V _{CC} = 5 V, I _F = 16 mA	_	25	_	μs
Turn–off time	tOFF		_	50	_	

Forward current IF (mA)

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.