<u>TOSHIBA</u>

TOSHIBA Photocoupler GaAlAs IRED + Photo IC

TLP350

Industrial Inverter Inverter for Air Conditioner IGBT/Power MOSFET Gate Drive IH(Induction Heating)

The TOSHIBA TLP350 consists of a GaAlAs light-emitting diode and an integrated photodetector. This unit is an 8-lead DIP package. The TLP350 is suitable for gate driving IGBTs or power MOSFETs.

- Peak output current : Io = ±2.5A (max)
- Guaranteed performance over temperature : -40 to 100°C
- Supply current : $I_{CC} = 2 \text{ mA} (\text{max})$
- Power supply voltage: Vcc = 15 to 30 V
- Threshold input current : I_{FLH} = 5 mA (max)
- Switching time (t_{pLH}/t_{pHL}) : 500 ns (max)
- Common mode transient immunity : $15 \text{ kV/}\mu\text{s}$
- Isolation voltage : 3750 Vrms
- UL Recognized : UL1577, File No.E67349
- Option(D4)

VDE Approved : DIN EN 60747-5-2

Maximum Operating Insulation Voltage: 890V_{PK}

Highest Permissible Over Voltage : 6000V_{PK}

(Note):When a EN 60747-5-2 approved type is needed, Please designate "Option(D4)"

Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	ON	OFF	Н
L	OFF	OFF	ON	L

Pin Configuration (top view)

A 0.1 μ F bypass capacitor must be connected between pins 8 and 5. (See Note 6)

TOSHIBA 11-10C4

Weight: 0.54 g (typ.)

Unit: mm

Absolute Maximum Ratings (Ta = 25°C)

	Characteristic	Symbol	Rating	Unit	
	Forward current	lF	20	mA	
	Forward current derating (Ta ≥ 8	∆l _F /∆Ta	-0.54	mA/°C	
Ē	Peak transient forward current	(Note 1)	I _{FP}	1	А
_	Reverse voltage		V _R	5	V
	Junction temperature		Tj	125	°C
	"H" peak output current	Ta = -40 to 100°C	I _{OPH}	-2.5	А
o	"L" peak output current	(Note 2)	IOPL	2.5	А
Detector	Supply voltage	Ta < 95 °C	V _{CC}	35	V
ă	Supply voltage Derating	Ta ≥ 95 °C	∆V _{CC} /∆Ta	-1.0	V /°C
	Junction temperature		Tj	125	°C
Oper	rating frequency	(Note 3)	f	50	kHz
Stora	age temperature range	T _{stg}	-55 to 125	°C	
Oper	rating temperature range	T _{opr}	-40 to 100	°C	
Lead	soldering temperature (10 s)	T _{sol}	260	°C	
Isola	tion voltage (AC, 1 minute, R.H. ≤	≤ 60%) (Note 5)	BVS	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 1: Pulse width $P_W \le 1 \mu s$, 300 pps
- Note 2: Exponential waveform pulse width $P_W \le 0.3 \mu s$, f $\le 15 kHz$
- Note 3: Exponential waveform $I_{OPH} \ge -2.0A (\le 0.3\mu s)$, $I_{OPL} \le 2.0A (\le 0.3\mu s)$
- Note 4: At 2 mm or more from the lead root.
- Note 5: This device is regarded as a two terminal device: pins 1, 2, 3 and 4 are shorted together, as are pins 5, 6, 7 and 8.
- Note 6: A ceramic capacitor(0.1 μF) should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypass may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

Recommended Operating Conditions

Characteristic		Symbol	Min	Тур.	Max	Unit
Input current, ON	(Note 7)	I _{F (ON)}	7.5	—	10	mA
Input voltage, OFF		V _{F (OFF)}	0	_	0.8	V
Supply voltage		V _{CC}	15	_	30	V
Peak output current		I _{OPH} /I _{OPL}	—	_	±2.0	А
Operating temperature		T _{opr}	-40	_	100	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Note 7: Input signal rise time (fall time) $< 0.5 \ \mu$ s.

Note 8: If the rising slope of the supply voltage (VCC) for the detector is steep, stable operation of the internal circuits cannot be guaranteed.

Be sure to set 3.0V/ μs or less for a rising slope of the VCC.

Electrical Characteristics (Ta = -40 to 100°C, unless otherwise specified)

Characteristic		Symbol	Test Circuit	Test C	conditions	Min	Typ.*	Max	Unit
Forward voltage	vard voltage V_F — $I_F = 10$ mA, Ta = 25°C		—	1.6	1.8	V			
Temperature coefficient of forward voltage		∆V _F /∆Ta	_	I _F = 10 mA		_	-2.0	_	mV/°C
Input reverse current		I _R	_	V _R = 5 V, Ta = 25°C		_		10	μA
Input capacitance		CT	_	V = 0 , f = 1 MHz,Ta = 25°C		_	45	250	pF
Output current (Note 9)	"H" Level	1	1	$V_{CC} = 30 \text{ V}, I_F = 1000 \text{ V}$ $V_{8-6} = -3.5 \text{ V}$	5 mA	_	-1.6	-1.0	
	H Level	IOPH	1	$V_{CC} = 15 \text{ V}, I_F = 5 \text{ mA}$ $V_{8-6} = -7.0 \text{ V}$		_		-2.0	A
	"L" Level ор		2	$V_{CC} = 30 \text{ V}, I_F = 0 \text{ mA}$ $V_{6-5} = 2.5 \text{V}$		1.0	1.6	_	A
	L Level	Level I _{OPL}	2	$V_{CC} = 15 V_{,IF} = 0 mA$ $V_{6-5} = 7.0V$		2.0	_	_	
Outrationality	"H" Level	V _{OH}	3	V _{CC 1} = +15 V - V _{EE 1} = -15 V	I _F = 5 mA	11	13.7		v
Output voltage	"L" Level	V _{OL}	4	$R_L = 200 \Omega$	$V_F = 0.8 V$	—	-14.9	-12.5	v
Supply current	"H" Level	ICCH	5	V _{CC} = 30 V	$I_F = 10 \text{ mA}$	—	1.3	2.0	mA
Supply current	"L" Level	I _{CCL}	6	V _O open	$I_F = 0 \text{ mA}$	_	1.3	2.0	IIIA
Threshold input current	$L\toH$	I _{FLH}	_	V _{cc} = 15V , V _o > 1V , Io = 0mA		_	1.8	5	mA
Threshold input voltage	$H\toL$	V _{FHL}	_	$V_{\rm CC}$ = 15V , $V_{\rm O}$ < 1V , Io = 0mA		0.8			V
Supply voltage		V _{CC}		_		15		30	V
UVLO threshhold		V _{UVLO+}	_	$\lambda = 25 \lambda = 5$		11.0	12.5	13.5	V
		V _{UVLO-}		V _O > 2.5 V , I _F = 5 mA		9.5	11.0	12.0	V
UVLO hysteresis		UVLO _{HYS}	_		_	_	1.5	_	V

*: All typical values are at $Ta = 25^{\circ}C$

Note 9: Duration of $I_O :\le 50 \ \mu s(1PULSE)$

Note 10: This product is more sensitive to static electricity (ESD) than the conventional product because of its minimal power consumption design.

General static electricity precautions are necessary for handling this component.

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Capacitance input to output	CS	V = 0,f = 1MHz (Note5)	_	1.0	_	pF
Isolation resistance	Rs	V _S = 500 V, Ta = 25°C, R.H. ≤ 60% (Note5)	1×10 ¹²	10 ¹⁴	_	Ω
		AC,1 minute	3750	—		V _{rms}
Isolation voltage	BVS	AC,1 second,in oil	—	10000		v rms
		DC,1 minute,in oil	_	10000	_	Vdc

Switching Characteristics (Ta = -40 to $100^{\circ}C$, unless otherwise specified)

Characteristic		Symbol	Test Circuit	Test Cor	nditions	Min	Typ.*	Max	Unit
Dreve exetient delay time	$L \to H$	t _{pLH}		$R_g = 20 \Omega$	$I_F=0 \rightarrow 5 \text{ mA}$	50	260	500	
Propagation delay time	$H\toL$	t _{pHL}			$I_F=5\rightarrow 0~mA$	50	260	500	
Switching Time Dispersion between ON and OFF		tpHL-tpLH	7	$V_{CC} = 30 V$ $R_g = 20 \Omega$, $C_g = 10 nF$			_	350	ns
Output rise time (10-90%)		tr		$V_{CC} = 30 V$	$I_F=0\rightarrow 5\ mA$		15		
Output fall time (90-10%)		t _f	R _g = 20 Ω C _g = 10 nF		$I_F = 5 \rightarrow 0 \text{ mA}$	_	8	_	
Common mode transient immunity at high level output		CMH		V _{CM} = 1000 Vp-p	I _F = 5 mA V _{O (min)} =26V	-15000			
Common mode transient i at low level output	mmunity	CML			I _F = 0 mA V _{O (max)} =1V	15000	_	_	V/µs

*: All typical values are at $Ta = 25^{\circ}C$

Test Circuit 1: IOPH

Test Circuit 2: IOPL

Test Circuit 3: VOH

Test Circuit 4: V_{OL}

Test Circuit 5: ICCH

Test Circuit 6: I_{CCL}

Test Circuit 7: tpLH, tpHL, tr, tf, PDD

 $\rm CM_L$ (CM_H) is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

100

50 30

10

5

0.5 0.3

0.1 0.05

0.03 0.01 1.0

Forward Current IF (mA)

Ta = 25 °C

1.2

1.4

Forward Voltage VF(V)

1.6

1.8

2.0

40

30

Forward Current I_F (mA)

*: The above graphs show typical characteristics.

*: The above graphs show typical characteristics.

**Test Circuit : VCC-VO(VUVLO)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.