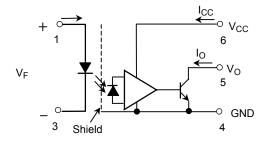
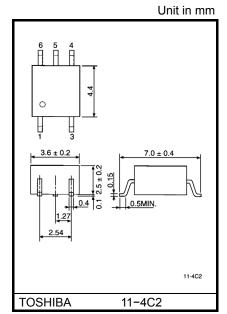
TOSHIBA Photocoupler GaAlAs Ired & Photo-IC

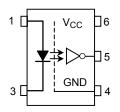
TLP115A


High Speed, Long Distance Isolated Line Receiver Microprocessor System Interfaces
Digital Isolation For A / D, D / A Conversion
Computer-Peripheral Interfaces
Ground Loop Elimination


The TOSHIBA mini flat coupler TLP115A is a small outline coupler, suitable for surface mount assembly.

TLP115A consists of a high output power GaAlAs light emitting diode, optically coupled to an integrated high gain, high speed shielded photo detector whose output is an open collector schottky clamped transistor. The shield, which shunts capacirively coupled common noise to ground, provides a guaranteed transient immunity specification of $1000V\,/\,\mu s$.

- Input current thresholds: IF = 5mA (max.)
- Switching speed: 10MBd (typ.)
- Common mode transient immunity: ± 1000V / μs (min.)
- Guaranteed performance over temp. : 0~70°C
- Isolation voltage: 2500Vrms (min.)
- UL recognized: UL1577, file no. E67349


Schematic

Weight: 0.09g

Pin Configuration (top view)

- 1 : Anode
- 3: Cathode
- 4 : GND
- 5 : V_O(Output)
- 6 : V_{CC}

Truth Table (positive logic)

Input	Output
Н	L
L	Н

Note. A $0.1\mu F$ bypass capacitor must be connected between pins 4 and 6.

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit	
	Forward current	(Note 1)	l _F	20	mA
LED	Pulse forward current		I _{FP}	40	mA
۳	Peak transient forward current	(Note 3)	I _{FPT}	1	Α
	Reverse voltage		V _R	5	V
	Output current		IO	25	mA
Detector	Output voltage		Vo	7	V
Dete	Supply voltage(1 minute maximum)		V _{CC}	7	V
	Output power dissipation		Ро	40	mW
Оре	rating temperature range		T _{opr} -40~85		°C
Stor	Storage temperature range		T _{stg}	−55~125	°C
Lea	Lead solder temperature(10 sec.)		T _{sol}	260	°C
Isola	Isolation voltage(AC, 1 min., RH≤ 60%, Note		BVS	2500	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

(Note 1) Derate 0.36mA / °C above 70°C.

(Note 2) 50% duty cycle, 1ms pulse width. Derate 0.72mA / °C above 70°C.

(Note 3) Pulse width $\leq 1 \mu s$, 300pps.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Input voltage, low level	V_{FL}	-3	0	1.0	V
Input current, high level	I _{FH}	6.3	8	20	mA
Supply voltage	V _{CC}	4.5	5	5.5	V
Fan out (TTL load, each channel)	N	_	_	8	_
Operating temperature	T _{opr}	0	_	70	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

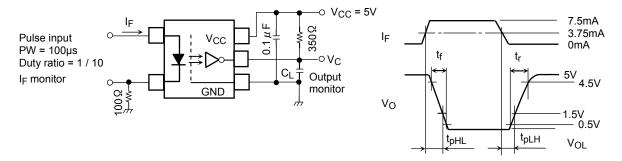
2

Electrical Characteristics (unless otherwise specified, Ta = 0~70°C, V_{CC} = 4.5 ~ 5.5V, $V_{FL} \le 1.0V$)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Forward voltage	V _F	I _F = 10mA, Ta =25°C	1.2	1.4	1.7	V	
Forward voltage temperature coefficient	V _F / Ta	I _F = 10mA	_	-2	_	mV / °C	
Reverse current	I _R	V _R = 3V, Ta = 25°C	_	_	10	μΑ	
Capacitance between terminals	C _T	V _F = 0, f = 1MHz, Ta = 25°C	_	30	_	РF	
High level output voltage	1	V _F = 1.0, V _O = 5.5V	_	_	250		
	Іон	V _F = 1.0, V _O = 5.5V, Ta = 25°C	_	0.5	10	μΑ	
Low level output current	V _{OL}	I _F = 5mA I _{OL} = 13mA (sinking)	_	0.4	0.6	V	
"H level output→L level output" input current	I _{FH}	I _{OL} = 13mA (sinking) V _{OL} = 0.6V	_	_	5	mA	
High level supply current	Іссн	V _{CC} = 5.5V, I _F = 0	_	7	15	mA	
Low level supply current	I _{CCL}	V _{CC} = 5.5V, I _F = 10mA	_	12	19	mA	
Input-output insulation leakage current	IS	V _S = 3540V, t = 5s Ta = 25°C (Note 4)	_	_	100	μA	
Isolation resistance	R _S	R.H. ≤ 60%, V _S = 500V DC Ta = 25°C (Note 4)	5×10 ¹⁰	10 ¹⁴	_	Ω	
Stray capacitance between input to output	CS	V _S = 0, f = 1MHz Ta = 25°C (Note 4)	_	0.8	_	рF	

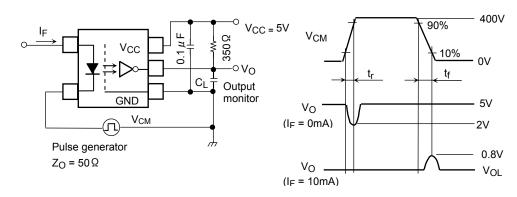
^{*} All typical values are V_{CC} = 5V, Ta = 25°C.

Switching Characteristics (V_{CC} = 5V, Ta = 25°C)


Characteristic	Symbol	Test Cir- cuit	Test Condition	Min.	Тур.	Max.	Unit
Propagation delay time (H→L)	t _{pHL}	1	$I_F = 0 \rightarrow 7.5 \text{mA}$ $C_L = 15 \text{pF}, R_L = 350 \Omega$	_	60	120	ns
Propagation delay time (L→H)	t _{pLH}	1	$I_F = 7.5 \rightarrow 0 \text{mA}$ $C_L = 15 \text{pF}, R_L = 350 \Omega$	_	60	120	ns
Output rise fall time(10–90%)	t _r , t _f	2	R _L = 350, C _L = 15pF I _F = 0↔7.5mA	_	30	_	ns
Common mode transient immunity at high output level	CM _H	2	I_F = 0 mA, V_{CM} = 400 V_{p-p} , $V_{O(MIN)}$ =2 V R_L = 350 Ω	1000		_	V / µs
Common mode transient immunity at low output level	CML	2	$I_F = 7.5 \text{ mA}, V_{CM} = 400V_{p-p}$ $V_{O(MAX)} = 0.8V,$ $R_L = 350\Omega$	-1000		_	V / µs

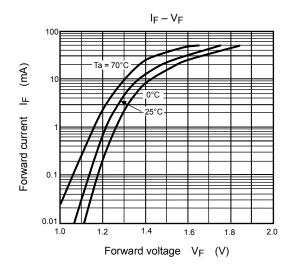
- (Note 4) Device considered a two–terminal device: Pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.
- (Note 5) The V_{CC} supply voltage to each TLP115A isolator must be bypassed by $0.1\mu F$ capacitor. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to package V_{CC} and GND pins of each device.

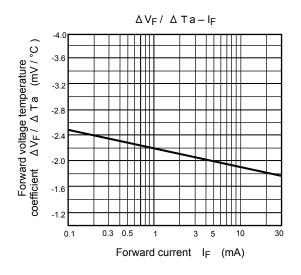
4

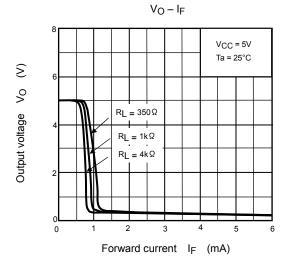

(Note 6) Maximum electrostatic discharge voltage for any pins: 180V(C = 200pF, R = 0)

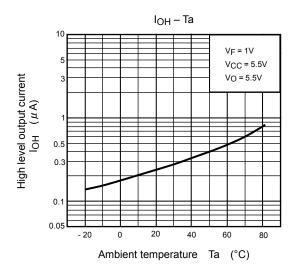
Test Circuit 1: Switching Time Test Circuit

 C_{L} is approximately 15pF which includes probe and stray wiring capacitance.

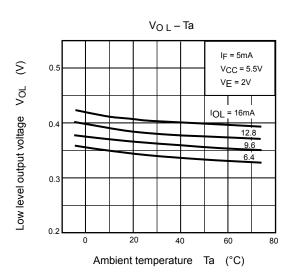

Test Circuit 2: Common Mode Transient Immunity Test Circuit

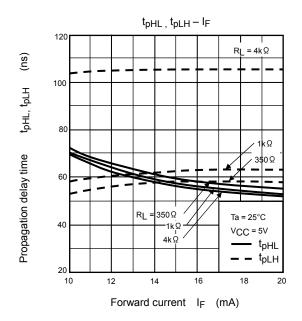


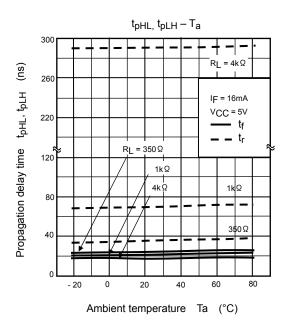

5

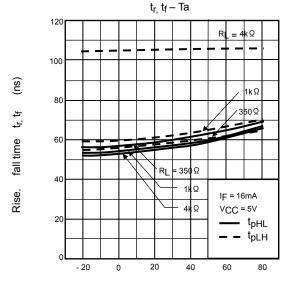

$$CM_{H}=\frac{320~(V)}{t_{\Gamma}(\mu s)},CM_{L}=\frac{320~(V)}{t_{f}(\mu s)}$$


 $C_{\mbox{\scriptsize L}}$ is approximately 15pF which includes probe and stray wiring capacitance.









6

Ambient temperature Ta (°C)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.