- **Ultrafast Operation . . . 7.6 ns (Typ)** - **Low Positive Supply Current** 10.6 mA (Typ) - Operates From a Single 5-V Supply or From a Split ±5-V Supply - **Complementary Outputs** - **Low Offset Voltage** - No Minimum Slew Rate Requirement - **Output Latch Capability** - **Functional Replacement to the LT1016** ### description The TL3016 is an ultrafast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ±5-V supplies. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of this comparator. The TL3016 only requires 10.6 mA (typical) to achieve a propagation delay of 7.6 ns. The TL3016 is a pin-for-pin functional replacement for the LT1016 comparator, offering higher speed operation but consuming half the power. #### **AVAILABLE OPTIONS** | | PACKAG | CUID | | |---------------|--------------------------|---------------|----------------------------------| | TA | SMALL
OUTLINE†
(D) | TSSOP
(PW) | CHIP
FORM [‡]
(Y) | | 0°C to 70°C | TL3016CD | TL3016CPWLE | TL3016Y | | -40°C to 85°C | TL3016ID | TL3016IPWLE | _ | [†]The PW packages are available left-ended taped and reeled only. ‡ Chip forms are tested at $T_A = 25$ °C only. # D AND PW PACKAGE (TOP VIEW) ### symbol (each comparator) # **POSITIVE SUPPLY CURRENT** FREE-AIR TEMPERATURE Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ### TL3016Y chip information This chip displays characteristics similar to the TL3016C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. | COMPONENT COUNT | | | | | | | | |-----------------|----|--|--|--|--|--|--| | Bipolars | 53 | | | | | | | | MOSFETs | 49 | | | | | | | | Resistors | 46 | | | | | | | | Capacitors | 14 | | | | | | | # TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D - MARCH 1997 - REVISED MARCH 2000 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{DD} (see Note 1) | – 7 V to 7 \ | |--|------------------------------| | Differential input voltage, V _{ID} (see Note 2) | | | Input voltage range, V _I | | | Input voltage, V _I (LATCH ENABLE) | | | Output current, IO | | | Continuous total power dissipation | See Dissipation Rating Table | | Operating free-air temperature range, T _A | 40°C to 85°C | | Storage temperature range, T _{stq} | – 65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN-. #### **DISSIPATION RATING TABLE** | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR
ABOVE T _A = 25°C | T _A = 70°C
POWER RATING | |---------|---------------------------------------|--|---------------------------------------| | D | 725 mW | 5.8 mW/°C | 464 mW | | PW | 525 mW | 4.2 mW/°C | 336 mW | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D - MARCH 1997 - REVISED MARCH 2000 ## electrical characteristics at specified operating free-air temperature, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted) | No Input offset voltage TA = 25°C TA = full range TA = 25°C TA = full range TA = 25°C TA = full range TA = 5°C | PARAMETER | | | | TL30160 | ; | | TL3016I | | UNIT | |---|--------------------------|----------------------------|---|-------|---------|------|-------|---------|------|-------| | Input offset voltage T _A = full range 3.5 | | PARAWETER | TEST CONDITIONS! | MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | UNII | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V10 | Input offset voltage | T _A = 25°C | | 0.5 | 3 | | 0.5 | 3 | m\/ | | Input offset voltage Input offset voltage Input offset current curren | VIO | input onset voltage | T _A = full range | | | 3.5 | | | 3.5 | IIIV | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ανιο | | | | -4.8 | | | -4.5 | | μV/°C | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | li o | Input offset current | T _A = 25°C | | 0.1 | 0.6 | | 0.1 | 0.6 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 110 | input onset current | T _A = full range | | | 0.9 | | | 1.3 | μΑ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | l.s | Input hige current | T _A = 25°C | | 6 | 10 | | 6 | 10 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ΙΊΒ | input bias current | T _A = full range | | | 10 | | | 10 | μΑ | | CMRR Common-mode rejection ratio -3.75 ≤ V _{IC} ≤ 3.5 V, T _A = 25°C 80 97 80 97 dB MSVR Supply-voltage rejection ratio Positive supply: 4.6 V ≤ +V _{DD} ≤ 5.4 V, T _A = 25°C 60 72 60 72 dB WOL Low-level output voltage I(sink) = 4 mA, T _A = 25°C Negative supply: -7 V ≤ -V _{DD} ≤ -2 V, T _A = 25°C 80 100 80 100 80 100 MV MV MV MV 4 mA, T _A = 25°C Negative supply: -7 V ≤ -V _{DD} ≤ -2 V, T _A = 25°C 80 100 80 100 80 100 MV MX MV MX | \/ | Common-mode input | $V_{DD} = \pm 5 \text{ V}$ | -3.75 | | 3.5 | -3.75 | | 3.5 | V | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | VICR | voltage range | V _{DD} = 5 V | 1.25 | | 3.5 | 1.25 | | 3.5 | v | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | CMRR | • | $-3.75 \le V_{IC} \le 3.5 \text{ V}, \qquad T_A = 25^{\circ}\text{C}$ | 80 | 97 | | 80 | 97 | | dB | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Supply-voltage rejection | | 60 | 72 | | 60 | 72 | | 40 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | KSVR | ratio | | | 100 | | 80 | 100 | | ub | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Va | Low lovel output voltage | | | 500 | 600 | | 500 | 600 | m\/ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | VOL | Low-level output voltage | $ \begin{aligned} &I_{\left(\text{sink}\right)} = 10 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $ | | 750 | | | 750 | | IIIV | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | \/-·· | High level output voltage | | 3.6 | 3.9 | | 3.6 | 3.9 | | V | | DD Negative supply current TA = full range -1.8 -1.3 -2.4 -1.3 | VOH | nigri-iever output voitage | | 3.4 | 3.7 | | 3.4 | 3.7 | | V | | Negative supply current V | | Positive supply current | T. – full range | | 10.6 | 12.5 | | 10.6 | 12.5 | m A | | VIL (LATCH ENABLE) 0.8 0.8 V VIH High-level input voltage (LATCH ENABLE) 2 2 V Low-level input current VLE = 0 0 1 0 1 | DD | Negative supply current | TA = Tull Tarige | -1.8 | -1.3 | | -2.4 | -1.3 | | IIIA | | VIH (LATCH ENABLE) Low-level input current VLE = 0 0 1 0 1 | V _{IL} | | | | | 0.8 | | | 0.8 | V | | III "AATOM TANAN | VIH | | | 2 | | | 2 | | | V | | [II] ((ATOU ENABLE) | 1 | Low-level input current | V _{LE} = 0 | | 0 | 1 | | 0 | 1 | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | اال | (LATCH ENABLE) | V _{LE} = 2 V | | 24 | 39 | | 24 | 45 | μΑ | [†] Full range for the TL3016C is $T_A = 0^{\circ}$ C to 70° C. Full range for the TL3016I is $T_A = -40^{\circ}$ C to 85° C. ‡ All typical values are measures with $T_A = 25^{\circ}$ C. SLCS130D - MARCH 1997 - REVISED MARCH 2000 # switching characteristics, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted) | PARAMETER | | TEST CONDITIONS† | | TL3016C | | | TL3016I | | | UNIT | |------------------|---|--|-----------------------------|---------|-----|------|---------|-------------|------|------| | | PARAMETER | TEST CON | IDITIONS | MIN | TYP | MAX | MIN | MIN TYP MAX | | UNIT | | | $\Delta V_{I} = 100 \text{ mV},$ | T _A = 25°C | | 7.8 | 10 | | 7.8 | 10 | | | | | l. l . | | T _A = full range | | 7.8 | 11.2 | | 7.8 | 12.2 | 20 | | ^t pd1 | Propagation delay time‡ | $\Delta V_{I} = 100 \text{ mV},$ | T _A = 25°C | | 7.6 | 10 | | 7.6 | 10 | ns | | | | $V_{OD} = 20 \text{ mV}$ | T _A = full range | | 7.6 | 11.2 | | 7.6 | 12.2 | | | tsk(p) | Pulse skew (t _{pd+} - t _{pd} -) | $\Delta V_I = 100 \text{ mV},$
$T_A = 25^{\circ}\text{C}$ | $V_{OD} = 5 \text{ mV},$ | | 0.5 | | | 0.5 | | ns | | t _{su} | Setup time, LATCH ENABLE | | | | 2.5 | | | 2.5 | | ns | #### **TYPICAL CHARACTERISTICS** #### **Table of Graphs** | | | | FIGURE | |----------------|--|--------------------------|--------| | | | vs Input voltage | 2 | | ICC | Positive supply current | vs Frequency | 3 | | | | vs Free-air temperature | 4 | | ICC | Negative supply current | vs Free-air temperature | 5 | | | | vs Overdrive voltage | 6 | | | | vs Supply voltage | 7 | | tpd | Propagation delay time | vs Input impedance | 8 | | | | vs Load capacitance | 9 | | | | vs Free-air temperature | 10 | | VIC | Common-mode input voltage | vs Free-air temperature | 11 | | | Input threshold voltage (LATCH ENABLE) | vs Free-air temperature | 12 | | V- | Output valtage | vs Output source current | 13 | | VO | Output voltage | vs Output sink current | 14 | | l _l | Input current (LATCH ENABLE) | vs Input voltage | 15 | Full range for the TL3016C is 0°C to 70°C. Full range for the TL3016I is -40° C to 85°C. † tpd1 cannot be measured in automatic handling equipment with low values of overdrive. The TL3016 is 100% tested with a 1-V step and 500-mV overdrive at TA = 25°C only. Correlation tests have shown that tpd1 limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, Vos is added to the overdrive. #### TYPICAL CHARACTERISTICS **NEGATIVE SUPPLY CURRENT** #### TYPICAL CHARACTERISTICS SLCS130D - MARCH 1997 - REVISED MARCH 2000 #### TYPICAL CHARACTERISTICS # **PROPAGATION DELAY TIME** FREE-AIR TEMPERATURE 25 V_{CC} = \pm 5 Vt pd - Propagation Delay Time - ns 20 15 Rising Edge 10 **Falling Edge** 5 - 50 - 25 25 50 75 100 125 T_A - Free-Air Temperature - °C Figure 10 ### vs FREE-AIR TEMPERATURE V_{IT} – Input Threshold Voltage (LATCH ENABLE) – V $V_{CC} = \pm 5 V$ 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 -50 -25 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 12 #### SLCS130D - MARCH 1997 - REVISED MARCH 2000 #### **TYPICAL CHARACTERISTICS** PACKAGE OPTION ADDENDUM www.ti.com 23-Apr-2010 #### PACKAGING INFORMATION | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | TL3016CD | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CPW | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CPWG4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CPWLE | OBSOLETE | TSSOP | PW | 8 | | TBD | Call TI | Call TI | | TL3016CPWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016CPWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IPW | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IPWG4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IPWLE | OBSOLETE | TSSOP | PW | 8 | | TBD | Call TI | Call TI | | TL3016IPWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TL3016IPWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | $^{^{(1)}}$ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### PACKAGE OPTION ADDENDUM www.ti.com 23-Apr-2010 Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION 14-Jul-2012 www.ti.com ## TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | All ulmensions are nominal | | | | | | | | | | | | | |----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | TL3016CDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TL3016CPWR | TSSOP | PW | 8 | 2000 | 330.0 | 12.4 | 7.0 | 3.6 | 1.6 | 8.0 | 12.0 | Q1 | | TL3016IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TL3016IPWR | TSSOP | PW | 8 | 2000 | 330.0 | 12.4 | 7.0 | 3.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------|--------------|-----------------|------|------|-------------|------------|-------------| | TL3016CDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | TL3016CPWR | TSSOP | PW | 8 | 2000 | 367.0 | 367.0 | 35.0 | | TL3016IDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | TL3016IPWR | TSSOP | PW | 8 | 2000 | 367.0 | 367.0 | 35.0 | # D (R-PDSO-G8) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. # D (R-PDSO-G8) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G8) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. #### Products Applications Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>