- **Ultrafast Operation . . . 7.6 ns (Typ)** - **Low Positive Supply Current** 10.6 mA (Typ) - Operates From a Single 5-V Supply or From a Split ±5-V Supply - **Complementary Outputs** - **Low Offset Voltage** - No Minimum Slew Rate Requirement - **Output Latch Capability** - **Functional Replacement to the LT1016** ## description The TL3016 is an ultrafast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ±5-V supplies. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of this comparator. The TL3016 only requires 10.6 mA (typical) to achieve a propagation delay of 7.6 ns. The TL3016 is a pin-for-pin functional replacement for the LT1016 comparator, offering higher speed operation but consuming half the power. #### **AVAILABLE OPTIONS** | | PACKAG | CLUD | | | |---------------|--------------------------|---------------|----------------------------------|--| | TA | SMALL
OUTLINE†
(D) | TSSOP
(PW) | CHIP
FORM [‡]
(Y) | | | 0°C to 70°C | TL3016CD | TL3016CPWLE | TL3016Y | | | -40°C to 85°C | TL3016ID | TL3016IPWLE | | | [†]The PW packages are available left-ended taped and reeled only. ‡ Chip forms are tested at $T_A = 25$ °C only. # D AND PW PACKAGE (TOP VIEW) ## symbol (each comparator) # **POSITIVE SUPPLY CURRENT** FREE-AIR TEMPERATURE Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## TL3016Y chip information This chip displays characteristics similar to the TL3016C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. | COMPONENT COUNT | | | | | |-----------------|----|--|--|--| | Bipolars 53 | | | | | | MOSFETs | 49 | | | | | Resistors | 46 | | | | | Capacitors | 14 | | | | # TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D - MARCH 1997 - REVISED MARCH 2000 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{DD} (see Note 1) | | |--|------------------------------| | Differential input voltage, V _{ID} (see Note 2) | | | Input voltage range, V ₁ | | | Input voltage, V _I (LATCH ENABLE) | | | Output current, IO | | | Continuous total power dissipation | See Dissipation Rating Table | | Operating free-air temperature range, T _A | –40°C to 85°C | | Storage temperature range, T _{stq} | – 65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN-. #### **DISSIPATION RATING TABLE** | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR
ABOVE T _A = 25°C | T _A = 70°C
POWER RATING | |---------|---------------------------------------|--|---------------------------------------| | D | 725 mW | 5.8 mW/°C | 464 mW | | PW | 525 mW | 4.2 mW/°C | 336 mW | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D - MARCH 1997 - REVISED MARCH 2000 ## electrical characteristics at specified operating free-air temperature, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted) | PARAMETER | | TEST CONDITIONS† | | TL3016C | | | TL3016I | | | UNIT | | |--------------------------------------|---|--|----------------------------|---------|------|------|---------|------|------|-------|--| | | PARAWETER | TEST CONDI | IIONSI | MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | UNII | | | V _{IO} Input offset voltage | | T _A = 25°C | | | 0.5 | 3 | | 0.5 | 3 | mV | | | VIO | input onset voltage | T _A = full range | | | | 3.5 | | | 3.5 | IIIV | | | ανιο | Temperature coefficient of input offset voltage | | | | -4.8 | | | -4.5 | | μV/°C | | | li o | Input offset current | T _A = 25°C | | | 0.1 | 0.6 | | 0.1 | 0.6 | | | | lio | Input offset current | T _A = full range | | | | 0.9 | | | 1.3 | μΑ | | | 1.5 | Input bias current | T _A = 25°C | | | 6 | 10 | | 6 | 10 | | | | IB | input bias current | T _A = full range | | | | 10 | | | 10 | μΑ | | | \/.op | Common-mode input | $V_{DD} = \pm 5 \text{ V}$ | | -3.75 | | 3.5 | -3.75 | | 3.5 | V | | | VICR | voltage range | V _{DD} = 5 V | | 1.25 | | 3.5 | 1.25 | | 3.5 | v | | | CMRR | Common-mode rejection ratio | $-3.75 \le V_{IC} \le 3.5 V$, | T _A = 25°C | 80 | 97 | | 80 | 97 | | dB | | | , Supply-voltage rejection | Positive supply: 4.6 V ≤ T _A = 25°C | $\leq +V_{DD} \leq 5.4 \text{ V},$ | 60 | 72 | | 60 | 72 | | dB | | | | ksvr | ratio | Negative supply: -7 V : $T_A = 25^{\circ}\text{C}$ | $\leq -V_{DD} \leq -2 V$, | 80 | 100 | | 80 | 100 | | dB | | | \/a: | Landard and and and | $I_{(sink)} = 4 \text{ mA},$
$T_A = 25^{\circ}C$ | V+ ≤ 4.6 V, | | 500 | 600 | | 500 | 600 | mV | | | VOL | Low-level output voltage | $I_{(sink)} = 10 \text{ mA},$
$T_A = 25^{\circ}\text{C}$ | V+ ≤ 4.6 V, | | 750 | | | 750 | | IIIV | | | \/-·· | (Disk level autout value of | V+ ≤ 4.6 V,
T _A = 25°C | $I_O = 1 \text{ mA},$ | 3.6 | 3.9 | | 3.6 | 3.9 | | V | | | VOH | High-level output voltage | V+ ≤ 4.6 V,
T _A = 25°C | $I_{O} = 10 \text{ mA},$ | 3.4 | 3.7 | | 3.4 | 3.7 | | V | | | la a | Positive supply current | T full range | | | 10.6 | 12.5 | | 10.6 | 12.5 | mA | | | IDD | Negative supply current | T _A = full range | | -1.8 | -1.3 | | -2.4 | -1.3 | | IIIA | | | V _{IL} | Low-level input voltage (LATCH ENABLE) | | | | | 0.8 | | | 0.8 | V | | | VIH | High-level input voltage (LATCH ENABLE) | | | 2 | | | 2 | | | V | | | 1 | Low-level input current | V _{LE} = 0 | | | 0 | 1 | | 0 | 1 | | | | IIL | (LATCH ENABLE) | V _{LE} = 2 V | | | 24 | 39 | | 24 | 45 | μΑ | | [†] Full range for the TL3016C is $T_A = 0^{\circ}$ C to 70° C. Full range for the TL3016I is $T_A = -40^{\circ}$ C to 85° C. ‡ All typical values are measures with $T_A = 25^{\circ}$ C. # switching characteristics, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted) | PARAMETER | | TEST SOUDITIONS! | | TL3016C | | TL3016I | | | UNIT | | |------------------------------|--|--|--------------------------------------|---------|------|---------|-----|------|------|----| | | PARAMETER | TEST CON | T CONDITIONS MIN TYP MAX MIN TYP MAX | | MAX |] """ [| | | | | | tod1 Propagation delay time‡ | $\Delta V_{I} = 100 \text{ mV},$ $V_{OD} = 5 \text{ mV}$ | T _A = 25°C | | 7.8 | 10 | | 7.8 | 10 | | | | | | T _A = full range | | 7.8 | 11.2 | | 7.8 | 12.2 | | | | | $\Delta V_{I} = 100 \text{ mV},$ | T _A = 25°C | | 7.6 | 10 | | 7.6 | 10 | ns | | | | | $V_{OD} = 20 \text{ mV}$ | T _A = full range | | 7.6 | 11.2 | | 7.6 | 12.2 | | | tsk(p) | Pulse skew (t _{pd+} - t _{pd} -) | $\Delta V_I = 100 \text{ mV},$
$T_A = 25^{\circ}\text{C}$ | $V_{OD} = 5 \text{ mV},$ | | 0.5 | | | 0.5 | | ns | | t _{su} | Setup time, LATCH ENABLE | | | | 2.5 | | | 2.5 | | ns | #### **TYPICAL CHARACTERISTICS** #### **Table of Graphs** | | | | FIGURE | |-----------------|--|--------------------------|--------| | | | vs Input voltage | 2 | | ICC | Positive supply current | vs Frequency | 3 | | | | vs Free-air temperature | 4 | | ICC | Negative supply current | vs Free-air temperature | 5 | | | | vs Overdrive voltage | 6 | | | | vs Supply voltage | 7 | | ^t pd | Propagation delay time | vs Input impedance | 8 | | | | vs Load capacitance | 9 | | | | vs Free-air temperature | 10 | | VIC | Common-mode input voltage | vs Free-air temperature | 11 | | | Input threshold voltage (LATCH ENABLE) | vs Free-air temperature | 12 | | V- | Output valtage | vs Output source current | 13 | | VO | Output voltage | vs Output sink current | 14 | | I _I | Input current (LATCH ENABLE) | vs Input voltage | 15 | Full range for the TL3016C is 0°C to 70°C. Full range for the TL3016I is -40° C to 85°C. † tpd1 cannot be measured in automatic handling equipment with low values of overdrive. The TL3016 is 100% tested with a 1-V step and 500-mV overdrive at TA = 25°C only. Correlation tests have shown that tpd1 limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, Vos is added to the overdrive. #### TYPICAL CHARACTERISTICS **NEGATIVE SUPPLY CURRENT** #### TYPICAL CHARACTERISTICS #### TYPICAL CHARACTERISTICS # **PROPAGATION DELAY TIME** FREE-AIR TEMPERATURE 25 V_{CC} = \pm 5 Vt pd - Propagation Delay Time - ns 20 15 Rising Edge 10 **Falling Edge** 5 - 50 - 25 25 50 75 100 125 T_A - Free-Air Temperature - °C Figure 10 ### vs FREE-AIR TEMPERATURE V_{IT} – Input Threshold Voltage (LATCH ENABLE) – V $V_{CC} = \pm 5 V$ 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 -50 -25 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 12 #### **TYPICAL CHARACTERISTICS** #### **MECHANICAL INFORMATION** #### D (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE PACKAGE #### 14 PIN SHOWN NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). - D. Four center pins are connected to die mount pad. - E. Falls within JEDEC MS-012 #### **MECHANICAL INFORMATION** ## PW (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE PACKAGE #### 14 PIN SHOWN NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated