

TDA7720B

3 band car audio processor

Datasheet - production data

- Center frequency programmable in 4 steps (10 kHz / 12.5 kHz / 15 kHz / 17.5 kHz)
- -15 to 15 dB range with 1 dB resolution
- High-pass
 - 2nd order frequency response
 - Center frequency programmable in 3 steps (100 Hz / 120 Hz / 150 Hz)
- Subwoofer
 - 2nd order low pass filter
 - Programmable cut off frequency
 - (55 Hz / 85 Hz / 120 Hz / 160 Hz)
 - 2 independent soft-step level control, +15 dB to -79 dB with 1 dB steps
- Speaker
 - 6 independent soft-step speaker controls
 - +15 dB to -79 dB with 1 dB steps
 - Two selectable output DC level
 - Direct mute
 - Mute functions
 - Direct mute
 - Digitally controlled soft-mute with 4 programmable mute-times
 - (0.48 ms / 0.96 ms / 8 ms / 16 ms)
- Offset detection
 - Offset voltage detection circuit for on-board power amplifier failure diagnosis

Description

The TDA7720B is a high performance signal processor specifically designed for car radio applications. The device includes a high performance audio processor with fully integrated audio filters and new soft-step architecture. The digital control allows programming in a wide range of filter characteristics.

Table 1. Device	summary
-----------------	---------

Order code	Package	Packing
TDA7720B	TSSOP28	Tube
TDA7720BTR	TSSOP28	Tape and reel

September 2013

DocID024331 Rev 2

This is information on a product in full production.

TSSOP28

Features

- Input multiplexer
 - QD1: quasi-differential stereo input
 - QD2: quasi-differential stereo input
 - SE1: stereo single-ended input
 - SE2: stereo single-ended input
 - SE3: stereo single-ended input
- Loudness
 - 2nd order frequency response
 - Programmable center frequency (400 Hz / 800 Hz / 2400 Hz)
 - 15 dB with 1 dB steps
 - Selectable high frequency boost
 - Selectable flat-mode (constant attenuation)
- Volume
 - +23 dB to -63 dB with 1 dB step resolution
 - Soft-step control with programmable blend times
- Bass
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (60 Hz / 80 Hz / 100 Hz / 200 Hz)
 - Q programmable 1.0/1.25/1.5/2.0
 - DC gain programmable
 - -15 to 15 dB range with 1 dB resolution
- Middle
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (500 Hz / 1 kHz / 1.5 kHz / 2.5 kHz)
 - Q programmable 0.75/1.0/1.25
 - 15 to 15 dB range with 1 dB resolution
- Treble

-	2 nd order frequency response

Contents

1	Bloc	k circui	t diagram
2	Pins	connec	ction and description7
	2.1	Pins c	onnection
	2.2	Pins d	escription
3	Elec	trical sp	pecifications
	3.1	Therm	al data
		3.1.1	Absolute maximum ratings9
	3.2	Electri	cal characteristics
4	Desc	ription	of audioprocessor
	4.1	-	tage
		4.1.1	Single-ended stereo input (SE1, SE2, SE3)
		4.1.2	Quasi-differential stereo Input (QD1,QD2)
		4.1.3	Fast charge
	4.2	Input g	jain
	4.3	Loudn	ess
		4.3.1	Loudness attenuation
		4.3.2	Peak frequency
		4.3.3	High frequency boost
		4.3.4	Flat mode
	4.4	Soft-m	ute
	4.5	Volum	e 17
	4.6	Bass .	
		4.6.1	Bass attenuation
		4.6.2	Center frequency
		4.6.3	Quality factors
		4.6.4	DC mode
	4.7	Middle	
		4.7.1	Middle attenuation
		4.7.2	Middle center frequency
		4.7.3	Quality factors

	4.8	Treble
		4.8.1 Treble attenuation
		4.8.2 Center frequency
	4.9	High-pass filter 22
	4.10	Subwoofer filter
	4.11	Soft-step control
	4.12	DC offset detector
	4.13	Output stage 24
	4.14	Audioprocessor testing 25
5	l²C bι	us specification
	5.1	Interface protocol
	5.2	I2C bus electrical characteristics
		5.2.1 Receive mode
		5.2.2 Transmission mode
		5.2.3 Reset condition
	5.3	Data byte specification 29
6	Packa	age information
7	Revis	ion history

List of tables

Table 1.	Device summary	. 1
Table 2.	Pins description	. 7
Table 3.	Thermal data	. 9
Table 4.	Absolute maximum ratings	. 9
Table 5.	Electrical characteristics	. 9
Table 6.	I ² C bus electrical characteristics	26
Table 7.	Subaddress (receive mode)	28
Table 8.	Main selector (0)	29
Table 9.	Output DC level / highpass (1)	29
Table 10.	Soft-mute / others (4)	30
Table 11.	Soft-step I (5)	31
Table 12.	Soft-step II / DC detector (6)	32
Table 13.	Loudness (7)	33
Table 14.	Volume (8)	34
Table 15.	Treble filter (9)	35
Table 16.	Middle filter (10)	35
Table 17.	Bass filter (11).	36
Table 18.	Subwoofer / middle / bass (12)	36
Table 19.	Speaker attenuation (FL/FR/RL/RR/SWL/SWR) (13-18)	37
Table 20.	Testing audio processor 1 (19)	37
Table 21.	Testing audio processor 2 (20)	38
Table 22.	Testing audio processor 3 (21)	39
Table 23.	Document revision history	41

List of figures

Figure 1.	Block circuit diagram.	. 6
Figure 2.	Pins connection (top view)	. 7
Figure 3.	Loudness attenuation @ fP = 400 Hz	
Figure 4.	Loudness center frequencies @ attn. = 15 dB	15
Figure 5.	Loudness attenuation, fc = 2.4 kHz	16
Figure 6.	Soft-mute timing	16
Figure 7.	Bass control @ fc = 80 Hz, Q = 1	
Figure 8.	Bass center frequencies @ gain = 14 dB, Q = 1	18
Figure 9.	Bass quality factors @ gain = 14 dB, fc = 80 Hz	18
Figure 10.	Bass normal and DC mode @ gain = 14 dB, fc = 80 Hz	19
Figure 11.	Middle control @ fc = 1 kHz, Q = 1	
Figure 12.	Middle center frequency @ gain = 14 dB, Q = 1	
Figure 13.	Middle quality factors @ gain = 14 dB, fc =1 kHz	20
Figure 14.	Treble control @ fc = 17.5 kHz	21
Figure 15.	Treble center frequencies @ gain = 14 dB	
Figure 16.	High-pass cut frequencies	22
Figure 17.	Subwoofer cut frequencies	
Figure 18.	DC offset detection circuit (simplified)	24
Figure 19.	Test circuit	25
Figure 20.	I ² C bus interface protocol	26
Figure 21.	I ² C bus data	27
Figure 22.	TSSOP28 mechanical data and package dimensions	40

1 Block circuit diagram

2 Pins connection and description

2.1 Pins connection

2.2 Pins description

Table 2. Pin	s description
--------------	---------------

Pin #	Pin name	Description	I/O
1	SE1L	Single-end input left	I
2	SE1R	Single-end input right	I
3	SE2L	Single-end input left	I
4	SE2R	Single-end input right	I
5	SE3L	Single-end input left	I
6	SE3R	Single-end input right	I
7	QD1L	Quasi-differential stereo inputs left	I
8	QD1G	Quasi-differential stereo inputs common	I
9	QD1R	Quasi-differential stereo inputs right	I
10	QD2L	Quasi-differential stereo inputs left	I
11	QD2G	Quasi-differential stereo inputs common	I
12	QD2R	Quasi-differential stereo inputs right	I
13	MUTE	External mute pin	I

Pin #	Pin name	Description	I/O
14	CREF	Reference capacitor	0
15	GND	Ground	S
16	OUTSWR	Subwoofer right output	0
17	OUTSWL	Subwoofer left output	0
18	OUTRF	Front right output	0
19	OUTRR	Rear right output	0
20	OUTLR	Rear left output	0
21	OUTLF	Front left output	0
22	WINTCL	DC offset detector filter output left channel	0
23	WINTCR	DC offset detector filter output right channel	0
24	VCC	Supply	S
25	SCL	I ² C bus clock	I
26	SDA	I ² C bus data	I/O
27	DCERR	DC offset detector output	0
28	WinIn	DC offset detector input	I

Table 2. Pins description (continued)

Note: The L & R channels may be swapped as per the user's wishes making use of proper connections to the device pins, with no impact on electrical performance. Software control has to take into account the external routing and be designed accordingly.

3 Electrical specifications

3.1 Thermal data

Table 3. Thermal data				
Symbol	Description	Value	Unit	
R _{th-jamb}	Thermal resistance junction-to-ambient	114	°C/W	

3.1.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	13	V
V _{in_max}	Maximum voltage for signal input pins	7	V
T _{amb}	Operating ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to 150	°C
	ESD withstand voltage:		
V _{ESD}	Human body model	$\geq \pm 2000$	V
	Charged device model	$\ge \pm 250$	V

3.2 Electrical characteristics

 V_s =11.5 V; T_{amb} = 25 °C; R_L = 10 k Ω ; all gains = 0 dB; f = 1 kHz; Output gain = 5 dB; Input = SE1; unless otherwise specified

Table 5. Electrical characteristic	5
------------------------------------	---

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
Supply								
Vs	Supply voltage	-	7.5	11.5	12.5	V		
۱ _s	Supply current	-	30	30 35 39 mA				
Input sel	ector	•						
R _{in}	Input resistance All single ended inputs		70	100	130	kΩ		
V _{CL}	Clipping level	Input gain = 0 dB, THD = 1 %	2	-	-	V _{RMS}		
S _{IN}	Input separation	-	80	100	-	dB		
Different	al stereo inputs							
R _{in}	Input resistance	Differential	70	100	130	kΩ		
CMRR	Common mode rejection	V _{CM} =1 V _{RMS} @ 1 kHz	46	60	-	dB		
CIVIRK	Ratio for main source	V _{CM} =1 V _{RMS} @ 10 kHz ⁽¹⁾	46	60	-	dB		

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Loudnes	s control					
A _{MAX}	Max. attenuation ⁽²⁾	-	14	15	16.5	dB
A _{STEP}	Step resolution ⁽²⁾	-	0.5	1	1.5	dB
		f _{P1}	-	400	-	Hz
f _{Peak}	Peak frequency ⁽³⁾	f _{P2}	-	800	-	Hz
		f _{P3}	-	2400	-	Hz
Volume c	ontrol		•			
G _{MAX}	Max. gain ⁽²⁾	-	21	23	25	dB
A _{MAX}	Max. attenuation ⁽²⁾	-	-66	-63	-60	dB
A _{STEP}	Step resolution (2)	-	0.5	1	1.5	dB
$ \begin{array}{c c} \hline A_{STEP} & S \\ \hline E_A & A \\ \hline E_T & T \\ \hline V_{DC} & D \\ \hline Soft-mute \end{array} $	Attenuation set error	G = -20 to +23 dB	-0.75	0	0.75	dB
	Allenuation set enor	G = -20 to -63 dB	-4	0	3	dB
Ε _Τ	Tracking error	-	-	-	2	dB
M	DC steps	Adjacent attenuation steps	-5	0.1	5	mV
v DC	DC steps	From 0 dB to A _{MAX}	-8	0.5	8	mV
Soft-mute	9					
A _{MUTE}	Mute attenuation		80	100	-	dB
		T ₁	0.36	0.48	0.6	ms
f _{Peak} Volume c G _{MAX} A _{MAX} A _{STEP} E _A E _T V _{DC} Soft-mute A _{MUTE} T _D V _{TH_Low} V _{TH_Low} V _{TH_High} RPU VPU	Delay time	T ₂	0.84	0.96	1.08	ms
		T ₃	7.3	7.6	8.5	ms
		Τ ₄	14	15.3	16.8	ms
V_{TH_Low}	Low threshold for MUTE pin	(4)	-	-	0.8	V
$V_{\text{TH}_\text{High}}$	High threshold for MUTE pin	(4)	2.5	-	-	V
RPU	Internal pull-up resistor for MUTE pin	-	35	48	63	kΩ
VPU	Internal pull-up voltage for MUTE pin	-	3	3.3	3.6	V
Bass con	trol					
		f _{C1}	-	60	-	Hz
۲a	Center frequency ⁽³⁾	f _{C2}	-	80	-	Hz
ГŬ		f _{C3}	-	100	-	Hz
		f _{C4}	-	200	-	Hz

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		Q ₁	-	1	-	-
Q _{BASS} C _{RANGE} A _{STEP}	Quality factor ⁽³⁾	Q ₂	-	1.25	-	-
Q _{BASS}	Quality factor ⁽³⁾	Q ₃	-	1.5	-	-
		Q ₄	-	2	-	-
C _{RANGE}	Control range (2)	-	14	15	16	dB
A _{STEP}	Step resolution (2)	-	0.5	1	1.5	dB
50	Dava DO sais	DC = off	-1	0	1	dB
QBASS I CRANGE I ASTEP I DCGAIN I Middle cor CRANGE I ASTEP I Fc I QMiddle I QMiddle I CRANGE I ASTEP I Fc I CRANGE I ASTEP I Fc I Fc I Speaker at I GMAX I ASTEP I	Bass-DC-gain	$DC = on, Gain = \pm 14 dB$	4	4.4	4.6	dB
Middle c	ontrol				1	1
C _{RANGE}	Control range (2)	-	14	15	16	dB
	Step resolution ⁽²⁾	-	0.5	1	1.5	dB
		f _{C1}	-	500	-	Hz
_	(3)	f _{C2}	-	1	-	kHz
FC	Center frequency ⁽³⁾	f _{C3}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kHz		
Q _{Middle}		f _{C4}	-	2.5	-	kHz
Q _{Middle}		Q ₁	-	0.75	-	-
	Quality factor ⁽³⁾	Q ₂	-	1	-	-
		Q ₃	-	1.25	-	-
Treble co	ontrol					
C _{RANGE}	Clipping level	-	13	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
		f _{C1}	-	10	-	kHz
_	(3)	f _{C2}	-	12.5	-	kHz
FC	Center frequency ⁽³⁾	f _{C3}	-	15	-	kHz
		f _{C4}	-	17.5	-	kHz
Speaker	attenuators				1	1
G _{MAX}	Max. gain ⁽²⁾	-	14	15	16	dB
	Max. attenuation ⁽²⁾	-	-90	-79	-70	dB
A _{STEP}	Step resolution ⁽²⁾	-	0.5	1	1.5	dB
A _{MUTE}	Mute attenuation	-	80	90	-	dB
		G = -20 to +15 dB	-0.75	0	0.75	dB
E _A	Attenuation set error	G = -20 to -79 dB	-10	0	10	dB
V _{DC}	DC steps	Adjacent attenuation steps	-5	0.1	5	mV

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Те	est condition	Min.	Тур.	Max.	Unit
HPF						•	
		f _{HP1}		-	100	-	Hz
F _{HP}	High-pass corner frequency	f _{HP2}		-	120	-	Hz
		f _{HP3}		-	150	-	Hz
Audio ou	tputs				•		
V _{CL}		PRE	THD = 0.5% VCC = 8.5V output level/gain = 4V/5 dB	2.5			N
	Clipping level	FRONT REAR	THD = 0.3% VCC = 8.5V output level/gain = 4V/5dB	2.5	-	-	V _{RMS}
V CL		PRE	THD = 0.5% VCC = 11.5V output level/gain = 5.75V/5dB	3.55			V
		FRONT REAR	THD = 0.3% VCC = 11.5V output level/gain = 5.75V/5dB	3.33	-	-	V _{RMS}
R _{OUT}	Output impedance	-		-	30	50	Ω
RL	Output load resistance	-		2	-	-	kΩ
CL	Output load capacitor	-		-	-	10	nF
N/		Output level/ga	in = 4 V / 5 dB	3.8	4.0	4.2	V
V _{DC}	Output DC level	Output level/ga	in = 5.75 V / 8 dB	5.5	5.75	6	V
G	Output gain	Output level/ga	in = 4 V /5 dB	4	5	6	dB
G _{OUT}		Output level/ga	7	8	9	dB	
Subwoof	er low-pass						
		f _{LP1}		-	55	-	Hz
f	Low-pass corner frequency	f _{LP2}		-	85	-	Hz
f _{LP}	(3)	f _{LP3}		-	120	-	Hz
		f _{LP4}		-	160	-	Hz
DC offset	t detection circuit						
		V ₁		±20	±30	±40	mV
V	Zero comp. window size	V ₂		±30	±45	±55	mV
V_{th}		V ₃		±40	±60	±70	mV
		V ₄		±70	±90	±100	mV

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Te	est condition	Min.	Тур.	Max.	Unit
		T ₁		7	11	25	μs
_	Max rejected anike length	T ₂		14	22	45	μs
τ_{sp}	Max. rejected spike length	T ₃		22	33	65	μs
		T ₄		28	44	80	μs
I _{CHDCErr}	DCErr charge current	-		3.5	5	6.5	μA
I _{DISDCErr}	DCErr discharge current	-		3.5	5	8	mA
V _{OutH}	DCErr high voltage	-		3.1	3.3	3.6	V
V _{OutH}	DCErr low voltage	-		0	100	300	mV
V_{TH_Low}	Low Threshold for WinIn pin	(4)		-	-	0.75	V
V_{TH_High}	High Threshold for WinIn pin	(4)		2.8	-	-	V
RPU	Internal pull-up resistor for WinIn pin	-		35	50	70	kΩ
VPU	Internal pull-up voltage for WinIn pin	-		3.1	3.3	3.5	V
General				•			
		BW = 20 Hz to 20 kHz	Output level / gain = 4V / 5dB	-	15	30	μV
e _{NO}	Output noise	A-Weighted, all gain = 0dB, HPF=OFF, Input=SE/QD	Output level/gain=5.75V/8dB	-	21	35	μV
		BW = 20 Hz to 20 kHz	Output level/gain=4V/5dB	-	9	21	μV
		A-Weighted, Output muted	Output level/gain=5.75V/8dB	-	12.5	21	μV
<u>S/NI</u>	Signal to poing ratio	all gain = 0 dB, Output level/ga V _o = 2.5 V _{RMS}	-	98	104	-	dB
S/N	Signal to noise ratio	all gain = 0dB, Output level/ga V _o = 3.55 V _{RMS}	in = 5.75 V / 8 dB;	98	104	-	dB
	Distortion	VIN=1V _{RMS;}	Output level/gain = 4 V / 5 dB	-	0.01	0.05	%
D	Distortion	all gain = 0dB, HPF=OFF	Output level/gain=5.75V/8dB	-	0.01	0.05	%
S _C	Channel separation left/right	-		75	90	-	dB

1. Guaranteed by design.

2. Measure performed in DC.

3. Value guaranteed by measuring correlated parameter.

4. Verified only in characterization.

4 Description of audioprocessor

4.1 Input stage

Two quasi-differential stereo input and three single-ended inputs are available.

4.1.1 Single-ended stereo input (SE1, SE2, SE3)

The input-impedance at each input is 100 $k\Omega$ and the attenuation is fixed to -3 dB for incoming signals.

4.1.2 Quasi-differential stereo Input (QD1,QD2)

The QD input is implemented as a buffered quasi-differential stereo stage with 100 k Ω input-impedance at each input. There is -3 dB attenuation at QD input stage.

4.1.3 Fast charge

Each differential input pin features a "fast-charge" switch allowing to quickly charge any external large coupling capacitors upon power-on of the device. When the device is power-on, the "fast-charge" switches are automatically turn on, for normal operation these switches need to be released by any programming of byte_0. After that, the "fast-charge" switches can be turned on/off by setting "fast charge = on/off".

4.2 Input gain

A 0/3 dB input gain is selectable to compensate the attenuation of input stage.

4.3 Loudness

There are four parameters programmable in the loudness stage.

4.3.1 Loudness attenuation

Figure 3 shows the attenuation as a function of frequency at $f_P = 400 \text{ Hz}$

4.3.2 Peak frequency

Figure 4 shows the four possible peak-frequencies at 400, 800 and 2400 Hz

Figure 4. Loudness center frequencies @ attn. = 15 dB

4.3.3 High frequency boost

Figure 5 shows the different loudness shapes in low and high frequency boost.

4.3.4 Flat mode

In flat mode the loudness stage works as a 0 dB to -15 dB attenuator.

4.4 Soft-mute

The digitally controlled soft-mute stage allows muting/demuting the signal with a l^2C bus programmable slope. The mute process can either be activated by the soft-mute pin or by the l^2C bus. This slope is realized in a special S-shaped curve to mute slow in the critical regions (see *Figure 6*).

For timing purposes the bit0 of the I^2C bus output register is set to 1 from the start of muting until the end of demuting.

Note: Please notice that a started mute-action is always terminated and could not be interrupted by a change of the mute –signal.

4.5 Volume

When the volume-level is changed audible clicks could appear at the output. The root cause of those clicks could either be a DC-offset before the volume-stage or the sudden change of the envelope of the audio signal. With the soft-step-feature both kinds of clicks could be reduced to a minimum and are no more audible. The blend-time from one step to the next is programmable as 5 ms or 10 ms. The soft-step control is described in detail in *Section 4.1.1*.

4.6 Bass

There are four parameters programmable in the bass stage.

4.6.1 Bass attenuation

Figure 7 shows the attenuation as a function of frequency at a center frequency of 80 Hz.

4.6.2 Center frequency

Figure 8 shows the four possible center frequencies 60, 80, 100 and 200 Hz.

4.6.3 Quality factors

Figure 9 shows the four possible quality factors 1, 1.25, 1.5 and 2.

Figure 9. Bass quality factors @ gain = 14 dB, f_c = 80 Hz

4.6.4 DC mode

In this mode the DC-gain is increased by 4.4 dB. In addition the programmed center frequency and quality factor is decreased by 25 % which can be used to reach alternative center frequencies or quality factors.

Note:

The center frequency, Q and DC-mode can be set fully independently.

4.7 Middle

There are three parameters programmable in the middle stage.

4.7.1 Middle attenuation

Figure 11 shows the attenuation as a function of frequency at a center frequency of 1 kHz.

Figure 11. Middle control @ fc = 1 kHz, Q = 1

4.7.2 Middle center frequency

Figure 12 shows the four possible center frequencies 500 Hz, 1 kHz, 1.5 kHz and 2.5 kHz.

4.7.3 Quality factors

Figure 13 shows the three possible quality factors 0.75, 1 and 1.25.

4.8 Treble

There are two parameters programmable in the treble stage.

4.8.1 Treble attenuation

Figure 14 shows the attenuation as a function of frequency at a center frequency of 17.5 kHz.

4.8.2 Center frequency

Figure 15 shows the four possible center frequencies 10k, 12.5k, 15k and 17.5 kHz.

Figure 15. Treble center frequencies @ gain = 14 dB

4.9 High-pass filter

The high-pass filter has 2 order filter characteristics with programmable cut-off frequency (100 / 120 / 150 Hz

4.10 Subwoofer filter

The subwoofer lowpass filter has Butterworth characteristics with programmable cut-off frequency (55 Hz / 85 Hz/ 120 Hz/ 160 Hz). The output phase can be selected between 0 deg and 180 deg. The input of subwoofer takes signal from bass filter output or output of input mux.

4.11 Soft-step control

In this device, the soft-step function is available for volume, speaker, loudness, treble, middle and bass block. With soft-step function, the audible noise of DC offset or the sudden change of signal can be avoided when adjusting gain setting of the block.

For each block, the soft-step function is controlled by soft-step on/off control bit in the control table. The soft-step transient time selection (5 ms or 10 ms) is common for all blocks and it is controlled by soft-step time control bit. The soft-step operation of all blocks has a common centralized control. In this case, a new soft-step operation will not be started before the completion of previous soft-step.

There are two different modes to activate the soft-step operation. The soft-step operation can be started right after I²C data sending, or the soft-step can be activated in parallel after data sending of several different blocks. The two modes are controlled by the 'act bit' (it is normally bit7 of the byte.) of each byte. When act bit is '0', which means action, the soft-step is activated right after the date byte is sent. When the act bit is '1', which means wait, the block goes to wait for soft-step status. In this case, the block will wait for some other block to activate the operation. The soft-step operation of all blocks in wait status will be done together with the block which activate the soft-step. With this mode, all specific blocks can do the soft-step in parallel. This avoids waiting when the soft-step is operated one by one. Be noticed that if a block is set to 'gain1' with act bit =1, later this block is set to 'gain2' with act bit=0, in this case the block will do a soft-step from present gain to 'gain2' but not from present gain to 'gain1' then to 'gain2'.

Chip Addr	Sub Addr	0xxxxxxx	
			← Soft-step start here

Chip Addr	Sub Addr	1xxxxxxx	1xxxxxxx	 0xxxxxxx	
					1.2

I← Soft-step start here for all

4.12 DC offset detector

Using the DC offset detection circuit (*Figure 18*) an offset voltage difference between the audio power amplifier and the APR's Front and Rear outputs can be detected, preventing serious damage to the loudspeakers. The circuit compares whether the signal crosses the zero level inside the audio power at the same time as in the speaker cell. The output of the zero-window-comparator of the power amplifier must be connected with the WinIn-input of the APR. The WinIn-input has an 50 k Ω internal pull-up resistor connected to 3.3 V. It is recommended to drive this pin with open-collector outputs only.

To compensate for errors at low frequencies the WinTC-pin are implemented, with external capacitors introducing the same delay $\tau = 22.5 \text{ k}\Omega * \text{C}_{\text{ext}}$ as the AC-coupling between the APR and the power amplifier introduces. For the zero window comparators, the time constant for spike rejection as well as the threshold are programmable.

See Electrical characteristics on page 9.

A low-active DC-offset error signal appears at the DCErr output if the next conditions are both true:

- a) Front and rear outputs are inside zero crossing windows.
- b) The input voltage V_{winin} is logic low whenever at least one output of the power amplifier is outside the zero crossing windows.

After power-on, the external attached capacitor is rapidly charged (fast-charge) to overcome a false indication.

Zero Window Comp OUTLF 45k WinTC Cext 45 gnd ero Window Comp OUTLR 18 5μ DCer H = all inside zero window to uF & Zero Window / Con Cext OUTRF 45k Spike rejection WinTCR WinIn Cext 45k Zero Window Comp OUTRR Z GAPGPS01832

Figure 18. DC offset detection circuit (simplified)

4.13 Output stage

The output gain and output DC voltage is configurable by I^2C to fit different application. The configuration is as following:

- AC Gain = 5 dB, DC level = 4 V
- AC Gain = 8 dB, DC level = 5.75 V

4.14 Audioprocessor testing

In the test mode, which can be activated by setting bit D7 of the l^2C subaddress byte and bit D0 of the testing audioprocessor byte, several internal signals are available at the QD2G pin. In this mode, the input resistance of 100 kOhm is disconnected from the pin. Internal signals available for testing are listed in the data-byte specification.

5 I²C bus specification

5.1 Interface protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB determines read/write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)
- the max. clock speed is 400kbits/s
- 3.3 V logic compatible

Figure 20. I²C bus interface protocol

S = Start

ACK = Acknowledge

5.2 I²C bus electrical characteristics

Table 6. I²C bus electrical characteristics

Symbol	Parameter	Min	Мах	Unit	
f _{SCL}	SCL clock frequency	-	400	kHz	
V _{IH}	High level input voltage	2.4	-	V	
V _{IL}	Low level input voltage	-	0.8	V	
t _{HD,STA}	Hold time for START	0.6	-	μs	
t _{SU,STO}	Setup time for STOP	0.6	-	μs	
t _{LOW}	Low period for SCL clock	1.3	-	μs	
t _{HIGH}	High period for SCL clock	0.6	-	μs	
t _F	Fall time for SCL/SDA	-	300	ns	
t _R	Rise time for SCL/SDA	-	300	ns	
t _{HD,DAT}	Data hold time	0	-	ns	
t _{SU,DAT}	Data setup time	100	-	ns	

5.2.1 Receive mode

S	1 0	0 0	1	0	0	R/W	AC K	ΤS	х	AI	A4	A3	A2	A1	A0	ACK	DAT A	ACK	Ρ
---	-----	-----	---	---	---	-----	---------	----	---	----	----	----	----	----	----	-----	----------	-----	---

S = Start

 $R/W = "0" \rightarrow Receive mode (Chip can be programmed by \mu P)$

"1" -> Transmission mode (Data could be received by μP)

ACK = Acknowledge

P = Stop

TS = Testing mode

AI = Auto increment

5.2.2 Transmission mode

SM = Soft-mute activated for main channel

BZ = Soft-step busy ('0' = Busy)

X = Not used

The transmitted data is automatic updated after each ACK. Transmission can be repeated without new chip address.

Г

٦

5.2.3 Reset condition

A power-on-reset is invoked if the supply voltage is below than 3.5 V. After that the registers are initialized to the default data written in following tables.

MSB							LSB	Function
12	11	10	A4	A3	A2	A1	A0	Function
0 1	-	-	-	-	-	-	-	Testing mode Off On
-	х	-	-	-	-	-	-	Not used
-	-	0 1	-	-	-	-	-	Auto increment mode Off On
-	-	-	0	0	0	0	0	Main selector
-	-	-	0	0	0	0	1	Output DC level / highpass
-	-	-	0	0	0	1	0	Not used
-	-	-	0	0	0	1	1	Not used
-	-	-	0	0	1	0	0	Soft-mute / others
-	-	-	0	0	1	0	1	Soft-step I
-	-	-	0	0	1	1	0	Soft-step II / DC-detector
-	-	-	0	0	1	1	1	Loudness
-	-	-	0	1	0	0	0	Volume / output gain
-	-	-	0	1	0	0	1	Treble
-	-	-	0	1	0	1	0	Middle
-	-	-	0	1	0	1	1	Bass
-	-	-	0	1	1	0	0	Subwoofer / middle / bass
-	-	-	0	1	1	0	1	Speaker attenuator left front
-	-	-	0	1	1	1	0	Speaker attenuator right front
-	-	-	0	1	1	1	1	Speaker attenuator left rear
-	-	-	1	0	0	0	0	Speaker attenuator right rear
-	-	-	1	0	0	0	1	Subwoofer attenuator left
-	-	-	1	0	0	1	0	Subwoofer attenuator right
-	-	-	1	0	0	1	1	Testing audio processor 1
-	-	-	1	0	1	0	0	Testing audio processor 2
-	-	-	1	0	1	0	1	Testing audio processor 3

Table 7. Subaddre	ess (receive mode)

5.3 Data byte specification

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
								Main source selector
					0	0	0	SE1
					0	0	1	SE3
					0	1	0	QD1
-	-	-	-	-	0	1	1	QD2
					1	0	0	SE2
					1	0	1	Mute
					1	1	0	Mute
					1	1	1	Mute
-	-	-	-	х	-	-	-	Not used
								Main source input gain select
-	-	-	0	-	-	-	-	0 dB
			1					<u>3 dB</u>
								Subwoofer flat
-	-	0	-	-	-	-	-	Off
		1						<u>On</u>
								Subwoofer input source
-	0	-	-	-	-	-	-	Input mux
	1							Bass output
х	-	-	-	-	-	-	-	Not used

Table 8. Main selector (0)

Table 9. Output DC level / highpass (1)

MSB					LSB	Function		
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	-	Not used
-	-	-	-	-	-	0 1	-	Output DC level 4 V (AC Gain = 5 dB) <u>5.75 V (AC Gain = 8 dB)</u>
-	-	-	-	0 0 1	0 1 x	-	-	High-pass frequency 100 Hz 120 Hz <u>150 Hz</u>
-	-	-	0 1	-	-	-	-	High-pass enable Off (bypass) <u>On</u>
х	х	х	-	-	-	-	-	Not used

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
-	-	-	-	-	-	-	0 1	Soft-mute On Off
-	-	-	-	-	-	0 1	-	Pin influence for mute Pin and IIC IIC
-	-	-	-	0 0 1 1	0 1 0 1	-	-	Soft-mute time 0.48 ms 0.96 ms 7.68 ms <u>15.36 ms</u>
-	-	0 0 1 1	0 1 0 1	-	-	-	-	Speaker-Ls/Rs input selection (OUTSWL & OUTSWR) High Pass filter Subwoofer filter High Pass filter Bass filter
-	0 1	-	-	-	-	-	-	Fast charge On <u>Off</u>
0 1	-	-	-	-	-	-	-	Anti-alias filter On <u>Off (bypass)</u>

Table 10. Soft-mute / others (4)

MSB						3011-318	LSB	Franklan
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Loudness soft-step On <u>Off</u>
-	-	-	-	-	-	0 1	-	Volume soft-step On Off
-	-	-	-	-	0 1	-	-	Treble soft-step On <u>Off</u>
-	-	-	-	0 1	-	-	-	Middle soft-step On <u>Off</u>
-	-	-	0 1	-	-	-	-	Bass soft-step On <u>Off</u>
-	-	0 1	-	-	-	-	-	Speaker LF soft-step On <u>Off</u>
-	0 1	-	-	-	-	-	-	Speaker RF soft-step On <u>Off</u>
0 1	-	-	-	-	-	-	-	Speaker LR soft-step On <u>Off</u>

Table 11. Soft-step I (5)

MSB						-	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Speaker RR soft-step On <u>Off</u>
-	-	-	-	-	-	0 1	-	Subwoofer left soft-step On Off
-	-	-	-	-	0 1	-	-	Subwoofer right soft-step On <u>Off</u>
-	-	-	-	0 1	-	-	-	Soft-step time 5 ms <u>10 ms</u>
-	-	0 0 1 1	0 1 0 1	-	-	-	-	Zero-comparator window size ±90 mV ±60 mV ±45 mV ±30 mV
0 0 1 1	0 1 0 1	-	-	-	-	-	-	Spike rejection time constant 11 μs 22 μs 33 μs <u>44 μs</u>

Table 12.	Soft-step	II / DC	detector	(6)

[-		Louune		
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Attenuation
				0	0	0	0	0 dB
				0	0	0	1	-1 dB
-	-	-	-	:	:	:	:	:
				1	1	1	0	<u>-14 dB</u>
				1	1	1	1	-15 dB
								Center frequency
		0	0					Flat
-	-	0	1	-	-	-	-	400 Hz
		1	0					800 Hz
		1	1					<u>2400 Hz</u>
								High boost
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

Table 13. Loudness (7)

I²C bus specification

						4. voium		
MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
	0	0	0	0	0	0	0	+0 dB
	0	0	0	0	0	0	1	+1 dB
	0	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15 dB
	0	0	1	0	0	0	0	+16 dB
	0	:	:	:	:	:	:	:
	0	0	1	0	1	1	1	+23 dB
	0	0	1	1	0	0	0	Not used
	0	:	:	:	:	:	:	:
	0	0	1	1	1	1	1	Not used
-	0	1	0	0	0	0	0	-0 dB
	0	:	:	:	:	:	:	:
	0	1	0	1	1	1	1	-15 dB
	0	:	:	:	:	:	:	:
	0	1	1	1	1	1	0	<u>-30 dB</u>
	0	1	1	1	1	1	1	-31 dB
	1	0	0	0	0	0	0	-32 dB
	1	0	0	0	0	0	1	-33 dB
	1	:	:	:	:	:	:	:
	1	0	1	1	1	1	1	-63dB
	1	1	х	х	х	х	x	Not used
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

Table 14. Volume (8)

						Treple I	. ,	
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Tunction
								Gain/attenuation
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			:	:	:	:	:	:
			0	1	1	1	0	-1 dB
-	-	-	0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Treble center frequency
	0	0						10.0 kHz
-	0	1	-	-	-	-	-	12.5 kHz
	1	0						15.0 kHz
	1	1						<u>17.5 kHz</u>
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

Table 15. Treble filter (9)

Table 16. Middle filter (10)

						illule II	(10)	
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			:	:	:	:	:	:
			0	1	1	1	0	-1 dB
-	-	-	0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Middle Q factor
	0	0						0.75
-	0	1	-	-	-	-	-	1
	1	0						<u>1.25</u>
	1	1						Reserved
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

MSB							LSB	Exaction
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/attenuation
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			:	:	:	:	:	:
			0	1	1	1	0	-1 dB
-	-	-	0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Bass Q factor
	0	0						1.0
-	0	1	-	-	-	-	-	1.25
	1	0						1.5
	1	1						2.0
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

Table	17.	Bass	filter	(11)	
				···/	

Table 18. Subwoofer / middle / bass (12)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Subwoofer cut-off frequency
						0	0	55 Hz
-	-	-	-	-	-	0	1	85 Hz
						1	0	<u>120 Hz</u>
						1	1	160 Hz
								Subwoofer output phase
-	-	-	-	-	0	-	-	180 deg
					1			<u>0 deg</u>
								Middle center frequency
			0	0				500 Hz
-	-	-	0	1	-	-	-	1000 Hz
			1	0				1500 Hz
			1	1				<u>2500 Hz</u>
								Bass center frequency
	0	0						60 Hz
-	0	1	-	-	-	-	-	80 Hz
	1	0						100 Hz
	1	1						<u>200 Hz</u>
								Bass DC mode
0	-	-	-	-	-	-	-	On
1								Off

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
	0	0	0	0	0	0	0	+0 dB
	0	0	0	0	0	0	1	+1 dB
	:	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15 dB
-	0	0	1	0	0	0	0	-0 dB
	0	0	1	0	0	0	1	-1 dB
	:	:	:	:	:	:	:	:
	1	0	1	1	1	1	0	-78 dB
	1	0	1	1	1	1	1	-79 dB
	1	1	х	х	х	х	х	mute
								Soft-step action
0	-	-	-	-	-	-	-	Act
1								Wait

Table 19. Speaker attenuation (FL/FR/RL/RR/SWL/SWR) (13-18)

Table 20. Testing audio processor 1 (19)										
						LSB	Function			
D6	D5	D4	D3	D2	D1	D0	Function			
							Audio processor testing mode			
-	-	-	-	-	-	0	Off			
						1	On			
							Test multiplexer at DCSEL ⁽¹⁾			
		0	0	0	0		SSCLK			
		0	0	0	1		REQ			
		0	0	1	0		SMCLK			
		0	0	1	1		DCDet Vth High			
		0	1	0	0		DCDet Vth Low			
		0	1	0	1		IntZeroErr			
-	-	0	1	1	0	-	Ref5V5			
		0	1	1	1		VGB1.95			
		1	0	0	0		Clock200k			
		1	0	0	1		SDCLK			
		1	0	1	0		VrefDCO			
		1	0	1	1		REQ_TEST			
		1	1	х	х		Reserved			
							Clock fast mode ⁽²⁾			
-	0	-	-	-	-	-	On			
	1						Off			
	D6 - -	0	D6 D5 D4 - - - - - - 0 - 0 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 1 1 1 1 - 0 - 0 0	D6 D5 D4 D3 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 - - 0 1 0 - - 0 1 0 - - 0 1 0 - - 0 1 0 0 1 0 1 0 1 0 1 0 1 0 - 0 - 1 0 1 1	D6 D5 D4 D3 D2 - - - - - - - - - - - - - - - - - - - - 0 0 0 0 - 0 0 0 1 0 - - 0 1 0 1 - - 0 1 0 1 - - 0 1 1 0 - - 0 1 1 0 - - 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 x	D6 D5 D4 D3 D2 D1 - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 0 0 0 1 0 - 0 0 0 1 0 1 0 - - 0 1 0 0 1 0 - - 0 1 0 1 1 0 - - 0 1 1 0 1 1 - - 0 1 1 1 0 1 - 1 0 1 1 1 1 1 - 1 0 1 1 1 1 1 1 1 </td <td>D6 D5 D4 D3 D2 D1 D0 - - - - - 0 1 - - - - - 0 1 - - - - - 0 1 - - - - - 0 1 - 0 0 0 0 1 1 - 0 0 0 1 0 1 - - 0 0 1 0 1 - - 0 1 0 1 - - - 0 1 1 0 - - - 0 1 1 0 - - - - - - - - - - - - - - - - 1 0<</td>	D6 D5 D4 D3 D2 D1 D0 - - - - - 0 1 - - - - - 0 1 - - - - - 0 1 - - - - - 0 1 - 0 0 0 0 1 1 - 0 0 0 1 0 1 - - 0 0 1 0 1 - - 0 1 0 1 - - - 0 1 1 0 - - - 0 1 1 0 - - - - - - - - - - - - - - - - 1 0<			

Table 20 Testing 1 (10) dia

MSB				Function				
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	0 1	-	-	-	-	-	-	Clock source ⁽²⁾ External (MUTE Pin) Internal (200 kHz)
0 1	-	-	-	-	-	-	-	Attenuator gain clock control ⁽²⁾ On <u>Off</u>

Table 20. Testing audio processor 1 (19) (continued)

1. The control bit needs both I^2C test mode on & sub-address test mode on.

2. The control bit does not depend on test mode.

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Test architecture ⁽¹⁾
-	-	-	-	-	-	-	0	Normal
							1	Split
								Oscillator clock ⁽²⁾
-	-	-	-	-	-	0	-	400 kHz
						1		<u>800 kHz</u>
								Soft-step curve ⁽²⁾
-	-	-	-	-	0	-	-	S-Curve
					1			Linear curve
								Manual set busy signal ⁽¹⁾
			0	0				Auto
-	-	-	0	1	-	-	-	Auto
			1	0				0
			1	1				<u>1</u>
								Request for clk generator ⁽¹⁾
			0	0				Allow
-	-	-	0	1	-	-	-	Allow
			1	0				Stopped
			1	1				Stopped
								No DCO spike rejection ⁽¹⁾
-	-	0	-	-	-	-	-	On
		1						Off
х	х	-	-	-	-	-	-	Not used

Table 21. Testing audio processor 2 (20)

1. The control bit needs sub-address test mode on.

2. The control bit does not depend on test mode.

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Enable clock for FL/FR/RL/RR/SWL/SWR
-	-	-	-	-	-	-	0	On
							1	Off
								Enable clock for volume
-	-	-	-	-	-	0	-	On
						1		Off
								Enable clock for treble and bass
-	-	-	-	-	0	-	-	On
					1			Off
								Enable clock for loudness and middle
-	-	-	-	0	-	-	-	On
				1				Off
х	х	х	х	-	-	-	-	Not used

Table 22. Testing audio processor 3 (21)

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*.

ECOPACK[®] is an ST trademark.

Figure 22. TSSOP28 mechanical data and package dimensions

7 Revision history

Date	Revision	Changes			
01-Mar-2013	1	Initial release.			
16-Sept-2013	2	Updated Disclaimer			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

