80 watt + 80 watt dual BTL class-D audio amplifier #### **Features** - 80 W + 80 W output power at THD = 10% with $R_L = 6 \Omega$ and $V_{CC} = 32 V$ - 70 W + 70 W output power at THD = 10% with $R_1 = 8 \Omega$ and $V_{CC} = 34 \text{ V}$ - Wide-range single-supply operation (14 36 V) - High efficiency ($\eta = 90\%$) - Four selectable, fixed gain settings of nominally 25.6 dB, 31.6 dB, 35.1 dB and 37.6 dB - Differential inputs minimize common-mode noise - Standby and mute features - Short-circuit protection - Thermal overload protection - Externally synchronizable ### **Description** The TDA7498L is a dual BTL class-D audio amplifier with single power supply designed for home systems and active speaker applications. It comes in a 36-pin PowerSSO package with exposed pad up (EPU) to facilitate mounting a separate heatsink. Table 1. Device summary | Order code | Temperature range | Package | Packaging | |------------|-------------------|-------------------|---------------| | TDA7498L | -40 to 85 °C | PowerSSO-36 (EPU) | Tube | | TDA7498LTR | -40 to 85 °C | PowerSSO-36 (EPU) | Tape and reel | Contents TDA7498L # **Contents** | 1 | Pin (| Pin description | | | |---|-------|------------------------------------|--|--| | | 1.1 | Pinout 6 | | | | | 1.2 | Pin list | | | | 2 | Elec | trical specifications 8 | | | | | 2.1 | Absolute maximum ratings | | | | | 2.2 | Thermal data 8 | | | | | 2.3 | Recommended operating conditions 8 | | | | | 2.4 | Electrical specifications 8 | | | | 3 | Cha | racterizations11 | | | | | 3.1 | Test circuit | | | | | 3.2 | Characterization curves | | | | | | 3.2.1 For $R_L = 6 \Omega$ | | | | | | 3.2.2 For $R_L = 8 \Omega$ | | | | 4 | Арр | lications information | | | | | 4.1 | Applications circuit | | | | | 4.2 | Mode selection | | | | | 4.3 | Gain setting | | | | | 4.4 | Input resistance and capacitance | | | | | 4.5 | Internal and external clocks | | | | | | 4.5.1 Master mode (internal clock) | | | | | | 4.5.2 Slave mode (external clock) | | | | | 4.6 | Output low-pass filter | | | | | 4.7 | Protection functions | | | | | 4.8 | Diagnostic output 24 | | | | 5 | Pack | kage mechanical data25 | | | | 6 | Revi | sion history | | | TDA7498L List of figures # **List of figures** | Figure 1. | Internal block diagram (showing one channel only) | . 5 | |------------|--|-----| | Figure 2. | Pin connections (top view, PCB view) | | | Figure 3. | Test circuit for characterizations | 11 | | Figure 4. | Test board | 12 | | Figure 5. | Output power (THD = 10%) vs. supply voltage | 13 | | Figure 6. | THD vs. output power | 13 | | Figure 7. | THD vs. frequency (1 W) | 14 | | Figure 8. | THD vs. frequency (100 mW) | 14 | | Figure 9. | Frequency response | 14 | | Figure 10. | FFT performance (0 dBFS) | 15 | | Figure 11. | FFT performance (-60 dBFS) | 15 | | Figure 12. | Output power (THD = 10%) vs. supply voltage | 16 | | Figure 13. | THD vs. output power | 16 | | Figure 14. | THD vs. frequency (1 W) | 17 | | Figure 15. | THD vs. frequency (100 mW) | 17 | | Figure 16. | Frequency response | 17 | | Figure 17. | FFT performance (0 dB) | 18 | | Figure 18. | FFT performance (-60 dB) | 18 | | Figure 19. | Applications circuit for 6- or 8- Ω speakers | 19 | | Figure 20. | Standby and mute circuits | | | Figure 21. | Turn on/off sequence for minimizing speaker "pop" | 20 | | Figure 22. | Input circuit and frequency response | 21 | | Figure 23. | Master and slave connection | | | Figure 24. | Typical LC filter for a 8- Ω speaker | | | Figure 25. | Typical LC filter for a 6- Ω speaker | 23 | | Figure 26. | Behavior of pin DIAG for various protection conditions | 24 | | Figure 27. | PowerSSO36 EPU outline drawing | 26 | List of tables TDA7498L # List of tables | Table 1. | Device summary | 1 | |-----------|----------------------------------|------| | Table 2. | Pin description list | 7 | | Table 3. | Absolute maximum ratings | 8 | | Table 4. | Thermal data | | | Table 5. | Recommended operating conditions | 8 | | Table 6. | Electrical specifications | | | Table 7. | Mode settings | | | Table 8. | Gain settings | | | Table 9. | How to set up SYNCLK | . 21 | | Table 10. | PowerSSO-36 EPU dimensions | | | Table 11 | Document revision history | | # 1 Device block diagram Figure 1 shows the block diagram of one of the two identical channels of the TDA7498L. Figure 1. Internal block diagram (showing one channel only) Pin description TDA7498L # 2 Pin description #### 2.1 Pinout Figure 2. Pin connections (top view, PCB view) TDA7498L Pin description ## 2.2 Pin list Table 2. Pin description list | Number | Name | Туре | Description | |--------|---------|------|---| | 1 | SUB_GND | PWR | Connect to the frame | | 2,3 | OUTPB | 0 | Positive PWM for right channel | | 4,5 | PGNDB | PWR | Power stage ground for right channel | | 6,7 | PVCCB | PWR | Power supply for right channel | | 8,9 | OUTNB | 0 | Negative PWM output for right channel | | 10,11 | OUTNA | 0 | Negative PWM output for left channel | | 12,13 | PVCCA | PWR | Power supply for left channel | | 14,15 | PGNDA | PWR | Power stage ground for left channel | | 16,17 | OUTPA | 0 | Positive PWM output for left channel | | 18 | PGND | PWR | Power stage ground | | 19 | VDDPW | 0 | 3.3-V (nominal) regulator output referred to ground for power stage | | 20 | STBY | I | Standby mode control | | 21 | MUTE | I | Mute mode control | | 22 | INPA | I | Positive differential input of left channel | | 23 | INNA | I | Negative differential input of left channel | | 24 | ROSC | 0 | Master oscillator frequency-setting pin | | 25 | SYNCLK | I/O | Clock in/out for external oscillator | | 26 | VDDS | 0 | 3.3-V (nominal) regulator output referred to ground for signal blocks | | 27 | SGND | PWR | Signal ground | | 28 | DIAG | 0 | Open-drain diagnostic output | | 29 | SVR | 0 | Supply voltage rejection | | 30 | GAIN0 | I | Gain setting input 1 | | 31 | GAIN1 | I | Gain setting input 2 | | 32 | INPB | I | Positive differential input of right channel | | 33 | INNB | I | Negative differential input of right channel | | 34 | VREF | 0 | Half VDDS (nominal) referred to ground | | 35 | SVCC | PWR | Signal power supply decoupling | | 36 | VSS | 0 | 3.3-V (nominal) regulator output referred to power supply | | - | EP | - | Exposed pad for heatsink, to be connected to ground | ## 3 Electrical specifications ### 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |---------------------|--|-------------|------| | V _{CC_MAX} | DC supply voltage for pins PVCCA, PVCCB | 44 | V | | V_{L_MAX} | Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN0, GAIN1 | -0.3 to 3.6 | ٧ | | T _{j_MAX} | Operating junction temperature | 0 to 150 | °C | | T _{stg} | Storage temperature | -40 to 150 | °C | Warning: Stresses beyond those listed under "Absolute maximum ratings" make cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating condition" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, the power supply with the nominal value rated in the recommended operating conditions, may rise beyond the maximum operating condition for a short time when no or very low current is sunk (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum rating is not exceeded. #### 3.2 Thermal data Table 4. Thermal data | Symbol | Parameter | Min | Тур | Max | Unit | |------------------------|--------------------------------------|-----|-----|-----|------| | R _{th j-case} | Thermal resistance, junction to case | - | 2 | 3 | °C/W | ### 3.3 Recommended operating conditions Table 5. Recommended operating conditions | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|--------------------------------------|-----|-----|-----|------| | V _{CC} | Supply voltage for pins PVCCA, PVCCB | 14 | - | 36 | V | | T _{amb} | Ambient operating temperature | -20 | - | 85 | °C | # 3.4 Electrical specifications Unless otherwise stated, the results in *Table 6* below are given for the conditions: V_{CC} = 32 V, R_L (load) = 6 Ω , R_{OSC} = R3 = 39 k Ω , C8 = 100 nF, f = 1 kHz, G_V = 25.6 dB and Tamb = 25 °C. Table 6. Electrical specifications | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |---------------------------------|--|--|------|------|------|-----------| | Iq | Total quiescent current | No LC filter, no load | - | 40 | 60 | mA | | I _{qSTBY} | Quiescent current in standby | - | - | 1 | 10 | μΑ | | V | Output effect voltage | Play mode | -100 | - | 100 | m\/ | | V _{OS} | Output offset voltage | Mute mode | -60 | - | 60 | mV | | I _{OCP} | Overcurrent protection threshold | $R_L = 0 \Omega$ | 5.0 | 6.0 | - | Α | | T _{jS} | Junction temperature at thermal shutdown | - | - | 150 | - | °C | | R _i | Input resistance | Differential input | 48 | 60 | - | kΩ | | V _{OVP} | Overvoltage protection threshold | - | 42 | 43 | - | ٧ | | V _{UVP} | Undervoltage protection threshold | - | - | - | 8 | V | | D | Device translater on resistance | High side | - | 0.2 | - | 0 | | R _{dsON} | Power transistor on resistance | Low side | - | 0.2 | - | $-\Omega$ | | П | Output power | THD = 10% | - | 80 | - | W | | P _o | | THD = 1% | - | 65 | - | | | Po | Output power | $R_L = 8 \Omega$, THD = 10%, $V_{CC} = 32V$ | - | 65 | - | W | | P _D | Dissipated power | P _o = 80 W + 80 W,
THD = 10% | - | 16 | - | w | | η | Efficiency | $P_0 = 80 \text{ W} + 80 \text{W}$ | - | 90 | - | % | | THD | Total harmonic distortion | P _o = 1 W | - | 0.1 | - | % | | | | GAIN0 = L, GAIN1 = L | 24.6 | 25.6 | 26.6 | | | C | Closed loop gain | GAIN0 = L, GAIN1 = H | 30.6 | 31.6 | 32.6 | 4D | | G _V | Closed-loop gain | GAIN0 = H, GAIN1 = L | 34.1 | 35.1 | 36.1 | - dB
- | | | | GAIN0 = H, GAIN1 = H | 36.6 | 37.6 | 38.6 | | | ΔG_V | Gain matching | - | -1 | - | 1 | dB | | СТ | Crosstalk | f = 1 kHz, P _o = 1 W | 50 | 70 | - | dB | | οN | Total input noise | A Curve, G _V = 20 dB | - | 15 | - | uV | | eN | Total Input noise | f = 22 Hz to 22 kHz | - | 25 | 50 | μV | | SVRR | Supply voltage rejection ratio | $\begin{aligned} &\text{fr} = 100 \text{ Hz, Vr} = 0.5 \text{ Vpp,} \\ &\text{C}_{\text{SVR}} = 10 \mu\text{F} \end{aligned}$ | - | 70 | - | dB | | T _r , T _f | Rise and fall times | - | - | 50 | - | ns | Table 6. Electrical specifications (continued) | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |-------------------|----------------------------|------------------------------|-----|-----|-----|------| | f_{SW} | Switching frequency | Internal oscillator | 290 | 310 | 330 | kHz | | 4 | Output switching frequency | With internal oscillator (1) | 250 | - | 400 | kHz | | f _{SWR} | Range | With external oscillator (2) | 250 | - | 400 | KMZ | | V _{inH} | Digital input high (H) | | 2.3 | - | - | \/ | | V _{inL} | Digital input low (L) | - | - | - | 0.8 | V | | V | Pin STBY voltage high (H) | | 2.7 | - | - | V | | V_{STBY} | Pin STBY voltage low (L) |] | - | - | 0.5 | V | | V | Pin MUTE voltage high (H) | | 2.5 | - | - | V | | V _{MUTE} | Pin MUTE voltage low (L) |] | - | - | 0.8 | v | | A _{MUTE} | Mute attenuation | V _{MUTE} < 0.8 V | - | 70 | - | dB | ^{1.} $f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4) \text{ kHz}, f_{SYNCLK} = 2 * f_{SW} \text{ with R3} = 39 \text{ k}\Omega \text{ (see } \textit{Figure 20.)}.$ ^{2.} $f_{SW} = f_{SYNCLK} / 2$ with the external oscillator. TDA7498L Characterization curves # 4 Characterization curves Figure 20 on page 18 shows the test circuit with which the characterization curves, shown in the next sections, were measured. Figure 3 below shows the PCB layout. ## 4.1 PCB layout Figure 3. Test board Characterization curves TDA7498L ### 4.2 Characterization curves Unless otherwise stated the measurements were made under the following conditions: $$V_{CC}$$ = 32 V, f = 1 kHz, G_{V} = 25.6 dB, R_{OSC} = 39 k Ω , C_{OSC} = 100 nF, Tamb = 25 $^{\circ}C$ ## 4.2.1 For $R_L = 6 Ω$ Figure 4. Output power vs. supply voltage Figure 5. THD vs. output power (1 kHz) Figure 6. THD vs. output power (100 Hz) Figure 7. THD vs. frequency (1 W) Figure 8. THD vs. frequency (100 mW) Characterization curves TDA7498L Figure 9. Frequency response Figure 10. FFT performance (0 dBFS) Figure 11. FFT performance (-60 dBFS) ## 4.2.2 For $R_L = 8 Ω$ Figure 12. Output power vs. supply voltage Figure 13. THD vs. output power (1 kHz) Characterization curves TDA7498L Figure 14. THD vs. output power (100 Hz) Figure 15. THD vs. frequency (1 W) Figure 16. THD vs. frequency (100 mW) Figure 17. Frequency response Figure 18. FFT performance (0 dBFS) Figure 19. FFT performance (-60 dBFS) ## 5 Applications information ### 5.1 Applications circuit Figure 20. Applications circuit ### 5.2 Mode selection The three operating modes of the TDA7498L are set by the two inputs, STBY (pin 20) and MUTE (pin 21). - Standby mode: all circuits are turned off, very low current consumption. - Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle. - Play mode: the amplifiers are active. The protection functions of the TDA7498L are enabled by pulling down the voltages of the STBY and MUTE inputs shown in *Figure 21*. The input current of the corresponding pins must be limited to 200 μ A. Table 7. Mode settings | Mode | STBY | MUTE | |---------|------------------|----------------| | Standby | L ⁽¹⁾ | X (don't care) | | Mute | H ⁽¹⁾ | L | | Play | Н | Н | ^{1.} Drive levels defined in Table 6: Electrical specifications on page 9 Figure 21. Standby and mute circuits Figure 22. Turn on/off sequence for minimizing speaker "pop" ### 5.3 Gain setting The gain of the TDA7498L is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin 31). Internally, the gain is set by changing the feedback resistors of the amplifier. Table 8. Gain settings | GAIN0 | GAIN1 | Nominal gain, G _v (dB) | |-------|-------|-----------------------------------| | L | L | 25.6 | | L | Н | 31.6 | | Н | L | 35.6 | | Н | Н | 37.6 | ### 5.4 Input resistance and capacitance The input impedance is set by an internal resistor Ri = 60 k Ω (typical). An input capacitor (Ci) is required to couple the AC input signal. The equivalent circuit and frequency response of the input components are shown in *Figure 23*. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz: $$f_C = 1 / (2 * \pi * Ri * Ci)$$ Figure 23. Input circuit and frequency response #### 5.5 Internal and external clocks The clock of the class-D amplifier can be generated internally or can be driven by an external source. If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the same clock frequency. This can be implemented by using one TDA7498L as master clock, while the other devices are in slave mode, that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As explained below, SYNCLK is an output in master mode and an input in slave mode. ### 5.5.1 Master mode (internal clock) Using the internal oscillator, the output switching frequency, f_{SW} , is controlled by the resistor, R_{OSC} , connected to pin ROSC: $$f_{SW} = 10^6 / ((R_{OSC} * 16 + 182) * 4) \text{ kHz}$$ where R_{OSC} is in $k\Omega$ In master mode, pin SYNCLK is used as a clock output pin whose frequency is: For master mode to operate correctly then resistor R_{OSC} must be less than 60 $k\Omega$ as given below in *Table 9*. #### 5.5.2 Slave mode (external clock) In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin SYNCLK to be internally configured as an input as given in *Table 9*. The output switching frequency of the slave devices is: $$f_{SW} = f_{SYNCLK} / 2$$ Table 9. How to set up SYNCLK | Mode | ROSC | SYNCLK | | |--------|--------------------------------|--------|--| | Master | $R_{OSC} < 60 \text{ k}\Omega$ | Output | | | Slave | Floating (not connected) | Input | | Figure 24. Master and slave connection ### 5.6 Output low-pass filter To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cutoff frequency should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L and C component values depending on the loudspeaker impedance. Some typical values, which give a cutoff frequency of 27 kHz, are shown in *Figure 25* and *Figure 26* below. Figure 25. Typical LC filter for a 8- Ω speaker Figure 26. Typical LC filter for a 6- Ω speaker 22/27 Doc ID 16504 Rev 3 #### 5.7 **Protection functions** The TDA7498L is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as explained here. #### Overvoltage protection (OVP) If the supply voltage exceeds the value for V_{OVP} given in *Table 6: Electrical specifications on* page 9 the overvoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage falls back to within the operating range, the device restarts. #### **Undervoltage protection (UVP)** If the supply voltage drops below the value for V_{UVP} given in *Table 6: Electrical* specifications on page 9 the undervoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage recovers to within the operating range, the device restarts. #### Overcurrent protection (OCP) If the output current exceeds the value for IOCP given in Table 6: Electrical specifications on page 9 the overcurrent protection is activated which forces the outputs to the high-impedance state. Periodically, the device attempts to restart. If the overcurrent condition is still present then the OCP remains active. The restart time, T_{OC}, is determined by the R-C components connected to pin STBY. #### Thermal protection (OTP) If the junction temperature, T_i, reaches 145 °C (nominally), the device goes to mute mode and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction temperature reaches the value for T_i given in *Table 6: Electrical specifications on page 9* the device shuts down and the output is forced to the high-impedance state. When the device cools sufficiently, the device restarts. #### 5.8 Diagnostic output The output pin DIAG is an open-drain transistor. When any protection is activated it switches to the high-impedance state. The pin can be connected to a power supply (< 36 V) by a pullup resistor whose value is limited by the maximum sinking current (200 μA) of the pin. Figure 27. Behavior of pin DIAG for various protection conditions TDA7498L ## 6 Package mechanical data The TDA7498L comes in a 36-pin PowerSSO package with exposed pad up. Figure 28 shows the package outline and Table 10 gives the dimensions. Table 10. PowerSSO-36 EPU dimensions | Symbol | Dimensions in mm | | | Dimensions in inches | | | |--------|------------------|------|------------|----------------------|-------|------------| | | Min | Тур | Max | Min | Тур | Max | | Α | 2.15 | - | 2.45 | 0.085 | - | 0.096 | | A2 | 2.15 | - | 2.35 | 0.085 | - | 0.093 | | a1 | 0 | - | 0.10 | 0 | - | 0.004 | | b | 0.18 | - | 0.36 | 0.007 | - | 0.014 | | С | 0.23 | - | 0.32 | 0.009 | - | 0.013 | | D | 10.10 | - | 10.50 | 0.398 | - | 0.413 | | E | 7.40 | - | 7.60 | 0.291 | - | 0.299 | | е | - | 0.5 | - | - | 0.020 | - | | e3 | - | 8.5 | - | - | 0.335 | - | | F | - | 2.3 | - | - | 0.091 | - | | G | - | - | 0.10 | - | - | 0.004 | | H | 10.10 | - | 10.50 | 0.398 | - | 0.413 | | h | - | - | 0.40 | - | - | 0.016 | | k | 0 | - | 8 degrees | - | - | 8 degrees | | L | 0.60 | - | 1.00 | 0.024 | - | 0.039 | | М | - | 4.30 | - | - | 0.169 | - | | N | - | - | 10 degrees | - | - | 10 degrees | | 0 | - | 1.20 | - | - | 0.047 | - | | Q | - | 0.80 | - | - | 0.031 | - | | S | - | 2.90 | - | - | 0.114 | - | | Т | - | 3.65 | - | - | 0.144 | - | | U | - | 1.00 | - | - | 0.039 | - | | Х | 4.10 | - | 4.70 | 0.161 | - | 0.185 | | Υ | 4.90 | - | 7.10 | 0.193 | - | 0.280 | In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 24/27 Doc ID 16504 Rev 3 Revision history TDA7498L # 7 Revision history Table 11. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 04-Dec-2009 | 1 | Initial release. | | 02-Jul-2010 | 2 | Removed datasheet preliminary status, updated features list and updated Device summary table <i>on page 1</i> Updated minimum supply voltage and temperature range in <i>Table 5: Recommended operating conditions on page 8</i> Updated typical power output for 8 Ω at 32 V in <i>Table 6: Electrical specifications on page 9</i> | | 12-Sep-2011 | 3 | Updated OUTNA in Table 2: Pin description list, minor textual updates | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com