INTEGRATED CIRCUIT TOSHIBA

TECHNICAL DATA

ANALOG FUNCTION SWITCH

The TC9152P is a feather touch function switch with built-in high operation voltage analog switches.

FEATURES

- The built-in high operation voltage analog switches allow use of wide dynamic range.
- The control system is operated by a single power supply and the analog switch system by dual power supplies of (+) and (-).

- Muting output is available to prevent "POP" noise at time of switching.
- A built-in large current buffer transistor allows direct driving of LEDs for status display, etc.
- The range of operating supply voltage is wide and current consumption is low because of the CMOS structure.

PIN CONNECTION

0	The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
\sim	105HIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use.
	No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
\odot	These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring
0	equipment, domestic appliances, etc.), please make sure that you consult with us before you use these TOSTIBA products in equipment which
	requires extraordinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but
	not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion
	control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims liability for any damage which may occur in case the
	105488A products are used in such equipment or applications without prior consultation with r05H8A.

TC9152P – 1 1994 – 11 – 28

(j)

TOSHIBA CORPORATION

INTEGRATED CIRCUIT TOSHIBA

TECHNICAL DATA

TC9152P

PIN FUNCTION

PIN No.	SYMBOL	FUNCTION	REMARKS
2.	ĪNĦ	Inhibit input terminal. Normal operation at "H" level, and inhibit operation at "L" level.	
3	OSC	C/R connecting terminal for the oscillator. Muting time and switching timing of the analog switch are set by frequency of this oscillator.	$R \xrightarrow{T} C$
4	ALL-OFF	Off designation input terminal for all analog switches. All analog switches are turned off when "H" level signal is input to this terminal.	4 SCHMITT TRIGGER INPUT
5	MUTE	Muting signal output terminal. When "H" level input is applied to the select input (SEL-1~SEL-5) terminal, this terminal is placed at "H" level only for a certain period in which the analog switches are changed over. Muting output time can be freely determined according to frequency of OSC.	
23 22 21 20 19	SEL-1 SEL-2 SEL-3 SEL-4 SEL-5	Select input terminals of the analog switches. When SEL-1~SEL-5 terminals are placed at "H" level, respective selected analog switches are turned on. On the TC9152P, all of SEL-1~SEL-5 are of mutual reset type. These terminals are I/O terminals which also serve as the display driver output terminals.	VDD VDD VSS1

TC9152	P – 2
1994	11 – 28
TOSHIBA	CORPORATION

INTEGRATED CIRCUIT

TOSHIBA

TECHNICAL DATA

TC9152P

 •

PIN No.	SYMBOL	FUNCTION	REMARKS
6 / 18	SIG-A ₁ SIG-B ₁	Signal input terminal 1. When SEL-1 is selected, Analog Switch 1 is turned on and power is conducted to the circuit between this terminal and the COM terminal.	
7/17	SIG-A ₂ SIG-B ₂	Signal input terminal 2. When SEL-2 is selected, Analog Switch 2 is turned on and power is conducted to the circuit between this terminal and the COM terminal.	ANALOG SIG SWITCH
8/16	SIG-A ₃ SIG-B ₃	Signal input terminal 3. When SEL-3 is selected, Analog Switch 3 is turned on and power is conducted to the circuit between this terminal and the COM terminal.	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ \end{array}$
9/15	SIG-A4 SIG-B4	Signal input terminal 4. When SEL-4 is selected, Analog Switch 4 is turned on and power is conducted to the circuit between this terminal and the COM terminal.	
10/14	SIG-A5 SIG-B5	Signal input terminal 5. When SEL-5 is selected, Analog Switch 5 is turned on and power is conducted to the circuit between this terminal and COM terminal.	Ĭ
11/13	COM-A COM-B	Analog switch common terminals.	
24 1 12	V _{DD} V _{SS1} V _{SS2}	Supply voltage applying terminals. VDD-VSS1 is for the control system. VDD-VSS2 is for the analog switch system.	

TC9152P - 3 1994 - 11 - 28

TOSHIBA CORPORATION

OPERATION

1. Decision of OSC frequency

The OSC terminal is the C/R connecting terminal of a single terminal type oscillator, and muting time, switching timing of the analog switch, etc. are decided by this oscillation frequency.

Oscillation frequency fosc=1/0.7CxRx

(*) As quality of the oscillator may vary according to production lot, use a (Variable) resistor for Rx.

The oscillator is normally not oscillating but when SEL input is accepted, starts to oscillate and after transmitting 5 clocks, stops to oscillate.

2. SEL terminals

These terminals are the select input for the analog switches and LED driver output I/O terminals. As these terminals are kept pulled down, they are normally kept at "L" level.

When "H" level signal is input, the LED driver is turned on by the internal latch circuit and is kept at "H" level even when returned to "L" level.

On the TC9152P, SEL-1~SEL-5 are of mutual reset type, and therefore, they are kept off unless selected input is applied.

TC9152	P – 4
1994 - 1	11 – 28
TOSHIBA	CORPORATION

3. Muting signal output

In order to prevent such abnormal sounds as popping sound generating when changing over the analog switches, muting signal is transmitted.

This muting output time is set by OSC frequency.

Muting time $T_{MUTE} = (1/f_{OSC}) \times 4$ (s)

4. Initialization of switches and backup

As the auto-initializing circuit has been built in, SEL-1 (Switch 1) is initialized when power is turned on.

This auto-initializing circuit operates only when the \overline{INH} terminal is at "H" level and potential of V_{DD} is less than about 4V.

Therefore, the inhibit and rise time of V_{DD} should be set as shown below when power turned on. Further, if V_{DD} drops below 4V at the (backup state), the auto-initializing function is similarly actuated.

TC9152P – 5	
1994 - 11 - 28	
TOSHIBA CORPORATION	

11	١T	ΈC	G	RA	T	E	D	CI	R	C	U	1	T

Multiple inputs

TOSHIBA

When more than two inputs in the mutual reset are simultaneously selected, during the period of this multiple inputs, all analog switches are turned off and muting signal is continuously transmitted. Further, when multiple inputs are released, the finally selected input is accepted.

Chattering protection circuit

SEL input chatter protecter built in, it is possible to evasion abnormal operation by noise, etc. Signal for selecting SEL input is not accepted unless it is held at "H" level for more than 1 cycle of OSC.

When the inhibit terminal is placed at "L" level, all inputs/outputs are cut off and the inhibit state is resulted.

As current is scarcely consumed under this state, the back-up for a long time becomes possible. If, however, potential of VDD drops below 4V as stated above, the auto-initializing circuit is actuated

and a specific switch is set by force.

Therefore, voltage above 4V is necessary for back-up.

Back-up by battery, etc.

Back-up by condenser

TC9152	2P - 6
1994	<u> 11 – 28</u>
тозніва	CORPORATION

5. Power supply

Power to the analog switch unit and the control unit is supplied from separate power supply systems, respectively, and the analog switch unit can be operated by dual power supplies of (+) and (-) and the control unit by a single supply unit.

Dual power supplies

Single power supply

(*) When this switch is used by a single power supply with V_{SS1} and V_{SS2} made common, up to 1/2 of voltage when dual power supplies are used can be applied.

6. Others

Parallel Connection of TC9152P

When switches having more than 5 contact points are required, it is possible to increase number of contact points by using plural number of TC9152P.

TC9152P – 7
1994 – 11 – 28
TOSHIBA CORPORATION

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

TOSHIBA

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage (1)	V _{DD} – V _{SS1}	16	V
Supply Voltage (2)	V _{DD} – V _{SS2}	32	V
Input Voltage At VSS1	V _{IN} (1)	-0.3~V _{DD} +0.3	V
Input Voltage At VSS2	V _{IN} (2)	$V_{SS} = 0.3 \sim V_{DD} + 0.3$	V
Power Dissipation	PD	400	mW
Operating Temperature	Topr	- 30~75	°C
Storage Temperature	T _{stg}	- 55~125	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{DD} = 15V, V_{SS1} = 0V, V_{SS2} = -15V, Ta = 25°C)

							· · · ·	
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating S Voltage (1)	upply	V _{DD} – V _{SS1}		— 7.5		~	15	v
Operating S Voltage (2)	upply	V _{DD} – V _{SS2}	<u> </u>		7.5	~	30	v
Operating S Current	upply	DD		$V_{DD} = 15V$, $V_{SS1} = 0V$ $V_{SS2} = 15V$, Driver off		1	3	mA
Back Up Vo	ltage	VB	—		4	~	15	V
Back Up Cu	rrent	ΙB			···	1	10	μΑ
Input	"H" Level	VIH		SEL-1~SEL-5 ALL-OFF, INH	V _{DD} × 0.7	~	V _{DD} + 0.3	v
Voltage	"L" Level	VIL		SEL-1~SEL-5 ALL-OFF, INH	V _{SS1} – 0.3	~	V _{DD} × 0.3	V
SEL Input Pi Resistor	ulldown	RD		SEL-1~SEL-5 ALL-OFF, INH	10	20	30	kΩ
	"H" Level	юн	More and a second	SEL-1~SEL-5, $V_{DD} = 15V$ $V_{OH} = 10V$, $V_{SS1} = 0V$	15	20	30	mA
Output Current	"H" Level	OH (MUTE)		MUTE, V _{DD} = 15V V _{SS1} = 0V, V _{OH} = 14V	100			
	"L" Level	IOL (MUTE)		MUTE, $V_{DD} = 15V$ $V_{SS1} = 0V$, $V_{OL} = 1V$	- 100	_		μΑ
OSC Freque	ncy Range	fosc		—	50	~	5k	Hz
Analog Switch On Resistor		RON	—	••••••	<u> </u>	100	300	Ω
Analog Switch Off Leak		IOFF	· · · · · · · · · · · · · · · · · · ·	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		0.1		μA
Analog Switch Total Harmonic Distortion		THD	1	$V_{DD} = 15V$, $V_{SS1} = 0V$ $V_{SS2} = -15V$, $f_{IN} = 1kHz$ $V_{IN} = 1V_{rms}$		0.005	0.03	%
Analog Switch Noise Voltage		V _N		$R_g = 1k\Omega$, $f_W = 20 \sim 20kHz$		2	P icture	μV _{rms}

TC9152P – 8

<u> 1994 – 11 – 28</u>

TOSHIBA CORPORATION

TEST CIRCUIT 1

V_{IN} - THD, R_L - THD

TEST CIRCUIT 2

fosc - V_{DD}

TC9152P – 9
1994 - 11 - 28
TOSHIBA CORPORATION

OUTLINE DRAWING DIP24-P-600

Weight : 3.4g (Typ.)

TC9152P - 10*	
1994 11 28	
TOSHIBA CORPORATION	