EZOT 📰 447 0024994 914

TOSHIBA (UC/UP)

64E D'

TC8830AF-

1. GENERAL

The TC8830AF is a single chip CMOS LSI for voice recording / playback using the ADM (Adaptive Delta Modulation). It composes a voice recording system with a static RAM for voice memory and an audio circuit including a microphone, speaker, amplifier, etc. as an external circuit.

2. FEATURES

- □ SRAMs (Static RAM) are used as a voice data memory up to 4 pieces of 64Kbit, or 4 pieces of 256Kbit.
- $\hfill\square$ It's possible to expanse at memory up to 8Mbit by external circuit.
- 🛛 It's connectable to microprocessor easily and controlled by 11 kinds of command.
- \Box Capable of recording / playback maximum 16 phrases at the manual control.
- □ 4 kinds of bit rates (32K, 16K, 11K, 8K bps) are provided.
- □ Recording / playback time is up to sixty four seconds (with four 256Kbit SRAMs and bit rate to be 16K bps).
- \Box On-chip microphone amplifier for recording and band pass filter for playback.
- □ It's possible to memory back up by standby function.
- On-chip ceramic oscillation circuit.
- \Box Single 5V power supply.
- □ 67-pin flat package.
 - The bit rate means the number of bits per second to be used.

M 9097249 0024995 850 M TOS3

TOSHIBA (UC/UP)

64E D~

3. BLOCK DIAGRAM AND SYSTEM CONFIGURATION

3.1 TC8830AF Block Diagram

TOSHIBA (UC/UP)

64E D ·

3.2 Block Diagram Description

(1) Address counter

The 20-bit counter to indicate address of the external SRAMs and counted up with 8 sampling under recording and playback. Values can be set or read by commands at the CPU control.

TC8830AF-3

(2) Stop Address register

The 20-bit register to indicate address to stop recording / playback. Values can be set by commands at the CPU control, but can not be read.

(3) Address comparator

When the contents of the address counter agree with those of the stop address register, the address counter is stopped.

(4) Index register

The register to indicate address of the index area on SRAMs in the label index mode (Refer to section 5.3).

(5) Status register

The 4-bit register which shows the status of TC8830AF. When $\overline{\text{RD}}$ pin is L label, TC8830AF gives this contents to data bus (P0~P3) at the CPU control.

(6) CPU interface

The interface circuit for the external microprocessor. This circuit has also the chattering elimination circuit in the manual control. This chattering elimination circuit has an effect on P0 to P3 pins (Start and Stop etc.).

(7) Sram interface

The interface circuit for the external SRAM.

(8) Microphone amplifier

Output of MICOUT pin is biased to Vref level, and can be connected directly to ADI pin.

(9) Band pass filter

On chip the 1'st order high pass filter and 2'nd order low pass filter.

FC8830AF-4

9097249 0024997 623 📰 TOS3

TOSHIBA (UC/UP)

64E D

- 3.3 Example of Voice Recording System
- 3.3.1 CPU Control Type

| 9097249 0024998 56T **||**T0S3

TC8830AF-5

TOSHIBA (UC/UP)

64E D

3.3.2 Manual Control Type

2

🛛 9097249 0024999 4T6 🖿 T0S3

TOSHIBA (UC/UP)

64E D ~

4. PIN ASSIGNMENT

🗰 9097249 0025000 &l6 🎟 T053

TOSHIBA (UC/UP)

64E D.

4.1 Pin Connection

4.2 Pin Desctiptions

			Struct	ure					
name	melno. M		control	CPU (control	Functional explanation			
		1/0	Pull-up / down	1/0	Pull-up/ down				
FILOUT	1	Out	-	Out	-	Output pin of the on-chip Band Pass Filter.			
TEST	3	ln	Pull- down	ln	Pull- down	Input pin for test circuit. (Connect to VSS1)			
D7 D6 D5 D4 D3 D2 D1 D0	4 6 8 10 13 14 15 16	1/0	Pull-up	1/0	Pull-up	Data I/O pins. Connect to I/O pins of SRAMs. At the CPU control, this pins are high impedance by DMA function.			
A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0	17 18 19 21 22 23 24 25 26 28 29 30 31 32 33	Out	-	Out	-	Address output pins for SRAMs. At the connect to 64K SRAM, not use A13 and A14 pins. At the CPU control, this pins are high impedance by DMA function.			
VSS1 VSS2	20 62	Power Supply	-	Power Supply	-	Power supply pins to be connected to ground. VSS1 is for digital circuit and VSS2 is for analog circuit.			
VDD	27 61	Power Supply	-	Power Supply	-	Power supply pins to be connected to positive.			
CE	34	Out	_	Out	-	Chip nable output pins for SRAMs. Use for memory capacity up. At the CPU control, this pins are high impedance by DMA function.			

E20T 107249 0025001 752 10753

TOSHIBA (UC/UP)

64E D

- --

			Struct	ure		
name	no.	Manua	control	CPU	control	Functional explanation
		1/0	Pull-up/ down	1/0	Pull-up/ down	
CE1 CE2 CE3 CE4	35 36 37 38	Out	_	Out	_	Chip enable output pins for SRAMs. At the CPU control, this pins are high impedance by DMA function.
STBY	39	In	None	In	None	Input pin f standby mode.
XIN XOUT	40 41	ln Out	-	In Out	-	Input and output pins of the ceramic oscillator.
256K	42	In	None	In	None	Input pin for SRAM capacity select.
R/₩	43	Out	-	Out		Read or write strobe output pin for SRAMs. Connect to R/W pin of SRAMs. At the CPU control, this pins are high impedance by DMA function.
ALE	44	Out	-	Out	-	Address latch enable pin for memory capacity up. At the CPU control, this pins are high impedance by DMA function.
WR	45	In	Pull- down (at STBY = L)	In	None	In the CPU control mode, input pin for write strobe (P0 to P3). In the manual control mode, used for bit rate with RD.
RD	46	In	Pull- down (at STBY = L)	In	None	In the CPU control mode, input pin for read strobe (PO to P3). In the manual control mode, used for bit rate with WR.
PH3 PH2 PH1 PH0	47 48 49 50	In	Pull- down (at STBY = L)	ln	Pull- down (at STBY = L)	Input pins for phrase select in the manual control mode.
P3 P2 P1 P0	51 52 53 54	In	Pull- down	1/0	None	In the CPU control mode, these are bidirectional data bus for commands or status between CPU and TC8830AF. In the manual control flowing, 1) P0 start input 2) P1 stop input 3) P2 auto phrase function select 4) P3 recording or playback select

E 207 🖿 669 2002200 649 🖿 1023

TOSHIBA (UC/UP)

64E D ~

			Struct	ure				
name	no.	o. Manual cont		CPU	control	Functional explanation		
		1/0	Pull-up / down	• • • • • • •				
EOS	55	Out	-	Out	-	Output pin for end of speech. Gives high level signal under the recording / playback waiting, and low level signal under the recording/playback.		
ACL	56	In	Pull-up	In	Pull-up	Input pin for reset signal.		
CPUM	57	ln	None	In	None	Input pin for mode change. Fix to low level at the manual control mode, to high level at the CPU control mode.		
Vref	58	1/0	-	1/0	-	Pin for connecting the capacitor to the reference voltage circuit of the on-chip Op-Amp.		
MICIN	59	In	-	In	-	Input pin for on-chip MICAMP(First stage). Microphone should be connected to this pin through capacitor.		
C1	60	Out	-	Out	_	Output pin for on-chip MICAMP(First stage).		
C2	63	In	-	ln	-	Input pin for on-chip MICAMP (second stage). C1 should be connected to this pin through capacitor.		
MIC OUT	64	Out	-	Out	-	Output pin for on-chip MICAMP (second stage).		
ADI	65	In	-	In	-	Input pin of the voice analysis circuit. Connected to MICOUT. Otherwise, signal should be input via a coupling capacitor.		
DAO	66	Out	-	Out	_	Output pin of the voice synthesis circuit with voltage follower. Output signal is biased to Vref. No voice appears at recording		
FILIN	67	In	-	ln	-	Input pins of the on-chip Band pass Filter.		

319

TC8830AF-9

🖬 9097249 0025003 525 🖬 TØS3

TOSHIBA (UC/UP)

64E D -

5 SPECIFICATIONS

5.1 Recording / Reproducing Part

System	ADM system	
D / A Converter	10-bit voltage type	
Bit rate	32K / 16K / 11K / 8K bps	
Number of max. phrases	At the manual control 16 phrases Auto phrase mode at the manual control Label index mode at the CPU control Direct mode at the CPU control	63 phrases 63 phrases No restriction

5.2 Others

Microphone amplifier	Two-stage, Gain = 46dB (TYP.)					
Filter	On chip filter for 2nd order low pass + 1st order high pass					
RAM for storing voice data	Up to 4 pcs. of 64Kbit, or 4 pcs. of 256Kbit. Example of usable memory (Access time) At the manual control					
Oscillation frequency	512 kHz					

| 9097249 0025004 461 🎟 T0S3

TOSHIBA (UC/UP)

64E D .

TC8830AF-

5.3 Operations and Functions

When composing a voice Recording / playback system with TC8830AF, control method is classified into the CPU control and the manual control using switches.

5.4 Manual Control

5.4.1 Selection of Phrase

Using 4 input pins of PH0~PH3, The recording / playback of maximum 16 phrases can be performed. Before starting the recording / playback. And using auto phrase function (refer to section 5.4.7), maximum 63 phrases can be performed. Phrase No. should be specified in 4bit code. Phrase number is as follows, and should be selected at sequence from low order phrase at the recording, but can be selected at random at the playback.

		· · · · · · · · · · · · · · · · · · ·			
Pin name Phrase No	(MSB) PH3	PH2	PH1	(LSB) PHO	
No.0	0	0	0	0	
No.1	0	0	0	1	
:	:	:	:	:	
:	:	:	:	1 :	
:	:	:	;	:	1 = H level
No.15	1	1	1	1	0 = L Level

Phrase 0001(NO.1)

Fig.5.1 Example of phrase selection

FC8830AF-12

9097249 0025005 3T8 **m** TOS3

64E D

TOSHIBA (UC/UP)

5.4.2 Selection of Bit Rate

The TC8830AF can use 4 kinds of bit rates as shown in Table 5.2, 8K, 11K, 16K and 32K bps, which are selected by \overline{WR} and \overline{RD} pins.

The bit rate should be select under the recording waiting state or playback waiting state.

Pin name	WR	RD	
Bit rate			
8Kbps	0	0	
11Kbps	0	1	
16Kbps	1	0	7
32Kbps	1	1	1 = H level 0 = L Level

Tah	l٩	52	Rit	rate

5.4.3 Recording

The TC8830AF has the 20-bit address counter, and voice data is written into SRAMs from the address designated by it's value. When the recording newly, first, it is necessary to reset the address counter and index area (refer to section 5.6) by \overline{ACL} signal.

Setting the P3 pin to H level results in the recording waiting state. When the P0 pin goes to H level (Start input), the recording starts and the address counter is added successively. When the P1 is set at H level (Stop input) or when the value on the address counter reaches the maximum address (Refer to section 5.5.6) of SRAMs by ADDRESS OVER FLOW DETECTOR (refer to section 5.6), the recording is stopped. Since this maximum address is changed with SRAMs capacity. Further, the recording is stopped when error address in the SRAM.

However, when the SRAMs capacity is fully used, subsequent recording is not allowed to protect the data stored previously in SRAMs. Therefore, the address counter should be reset by the $\overline{\text{ACL}}$ signal before new recording.

When the recording starts, a value of the address counter at the start (Start address) and when the recording ends, that at the stop (Stop address) are automatically written into a part of SRAM, respectively.

9097249 0025006 234 **m**T0S3

TOSHIBA (UC/UP)

64E D ⊷

TC8830AF-13

5.4.4 Playback and Pause Function

Setting the P3 pin to L level results in the playback waiting state. When the P0 pin is set at H level, the TC8830AF starts the playback after loading the start address and stop address, which have been written at the recording, into the address counter and stop address register, respectively.

When the P1 pin is set at H level during the playback, the playback is paused. Playback is continued when the P0 pin is set at H level under this condition.

The playback is stopped when the P1 pin is set at H level during the playback pause state or when the value of the address counter agrees with the stop address by ADDRESS COMPARATOR FLIPFLOP (refer to section 5.5.7).

5.4.5 Timing of Recording / Playback

TC8830AF not receive start input under the recording

Fig.5.2 Timing of recording

E207 🗰 077249 0025007 170 🗰 T053

TOSHIBA (UC/UP)

64E D

TC8830AF not receive start input under the playback

5.4.6 Restriction of Start Input

When the recording and playback starts, there is the following restriction between P0 pin (start input) and P1 pin (recording).

Fig.5.6 Timing of change at recording / playback

🛚 9097249 0025009 T43 🎟 T0S3

TOSHIBA (UC/UP)

64E D

5.4.7 Auto Phrase Function

Phrase No. can be increased automatically at the recording and playback.

Initial value of phrase No. setting by PH0~PH3 pins. This function is enabled when the P2 pin is set to H level under this state.

Valid phrase is No. 0 \sim 62. if over the No. 62, lost to content of SRAM. And over the phrase No. 16 is not direct playback

Fig.5.8 Auto phrase playback

9097249 0025010 765 **m** TOS3

TC8830AF-17

TOSHIBA (UC/UP)

64E D 🕓

5.4.8 Status Change at The Manual Control

Fig.5.9 Status change at the manual control

■ 9097249 0025011 6T1 **■■**T0S3

TOSHIBA (UC/UP)

64E ⊅

5.4.9 Chattering Elimination Circuit

At the manual control, the chattering elimination circuit is actuated to prevent from malfunction due to the switches connected to the P0~P3 pins.

ton, toff is about 64 ms, at f_{CLK} = 512 kHz

Fig.5.10 Chattering elimination circuit

Input signal should be applied stably for more than t_{ON} and t_{OFF} .

Start and stop signals should be applied stably for more than t_{OPFF} .

5.4.10 EOS Delay Time at Manual Control

 t_{ED} is about min 32 ms, max 64 ms, at $f_{CLK} = 512$ kHz

Fig.5.11 EOS delay time at manual control

328

E20T 📰 8E2 5102500 P47249

TC8830AF-19

TOSHIBA (UC/UP)

64E D -

5.5 CPU Control

At the CPU control, the operation is controlled by 11 kinds of commands and a CPU can read the status of TC8830AF by 4bit status register.

In addition, the TC8830AF has the ADDRESS OVERFLOW DETECTOR (Note 1) and ADDRESS COMPARATOR FLIPFLOP (Note 2) which control the recording and playback operations.

(Note 1) ADDRESS OVERFLOW DETECTOR Refer to section 5.5.5
(Note 2) ADDRESS COMPARATOR FLIPFLOP Refer to section 5.5.6

5.5.1 How to Write Commands

As shown in Fig. 5.12, (Dusing $\overline{\text{RD}}$ pulse, read status from TC8830AF and check BUSY flag (DIf not busy state, after setting up command in P0~P3, write a command using $\overline{\text{WR}}$ pulse. In case of such 3 nibble commands as LABEL, keep at command processing time (refer to section 5.2.5), (3) write the 2'nd and 3'rd nibbles.

After the 1'st and 2'nd nibbles of a 3 nibble command, other commands can not be written.

This also applies to 7 nibble commands like ADLD1 and ADLD2.

How to write DTRD and ADRD commands, refer to section 5.5.2

Fig.5.12 How to write command

тС	8830AF-20	9097249 0025013 474	EZOT
I		TOSHIBA (UC/UP)	64E D
5.5.2	Commands of TC8830AF		
(1)	Should not be issued		
(2)	NOP (1 nibble)		
		ler the recording waiting state, this command sets this command is used to reset OVR flag in the status	
(3)	START (1 nibble)	D3 0 0 1 0 D0	
		o start the recording / playback in the DIRECT MOD nter. In addition, this command is used to set EOS	
(4)	STOP (1 nibble)	D3 0 0 1 1 D0	
	address counter is written command is used to reset	executed under the recording, the recording is stopp into the INDEX AREA of SRAM as the stop address EOS flag in the status register. When this comman playback stops, to reset EOS flag in the status registe	s. In addition, this nd is executed two
(5)	ADLD1 (6 nibbles)	D3 0 1 0 0 D0	
		nibbles data in the address counter. Reset P. In addition, this command sets into the playback w	
(6)	ADLD2 (6 nibbles)	D3 0 1 0 1 D0	
		nibbles data in the stop address register. Set P. Set a value of ADLD2 is more than ADLD1. back waiting state.	
(7)	CNDT (2 nibbles)	D3 0 1 1 0 D0	
	-	enable / disable of ADDRESS OVER FLOW DET addition, this command sets into the playback waiti	
(8)	LABEL (3 nibbles)	D3 0 1 1 1 D0	
		the successive 2 nibbles data and starts the recording der the recording waiting state, the contents of the	

this command is issued under the recording waiting state, the contents of the address counter is written into the index area of SRAM and recording starts. In the playback waiting state, starts the playback after reading start address and stop address from index area of SRAM.

905	17249 0025014	EZOT I DDE	TC8830AF-21
TOSI	HIBA (UC/UP)	ьче »	
(9)	the low order address side the status register can not	e against 5 successive read accesses	are come out by 4 bits at a time from s. During this period, the contents of t be issued without performing 5 read hiting state.
(10)	REC (1 nibble)	D3 1 0 0 1 D0	-
	Changes the playback	waiting state to the recording waiti	ng state.
(11)	DTRD (1 nibble)	D3 1 0 1 0 D0	
	successive 2 read access. I address counter is not incr	During this period, the contents of t reased. In addition, this command s	shown by the address counter for the he status register can not be read, the els into the playback waiting state.
(12)			rom the address shown by the address this command sets into the playback
(13)	Should not be issued	D3 1 1 0 0 D0	
(14)	Should not be issued	D3 1 1 0 1 D0	
(15)	Should not be issued	D3 1 1 1 0 D0	
(16)	Should not be issued	D3 1 1 1 1 D0	

Under the recording / playback, any command other than STOP should not be issued.

TC8830AF-22 9097249 0025015 247 T053 ----

TOSHIBA (UC/UP)

64E D ...

			nibb P1		F	2'nd nil P3 P2	oble P1 P0	3'rd nib P3 — P		4th nibble P3—P0		nibble — P0	6th nibble P3P0
NOP	0	0	0	1							-		
START	0	0	1	0				-					
STOP	0	0	1	1		•					-	_	
ADLD1	0	1	0	0	A3	A2 /	A1 A0	A7 A	4	A11-A8	A15-	-A12	A19-A16
ADLD2	0	1	0	1	\$3	52	51 SO	57—S	4	\$11-58	S15-	-\$12	\$19-516
CNDT	0	1	1	0	0	0 OV BR1 BR0				Bit rate	BR1	BRO]
		Γ	Aut	o rec	ordin	g stop	ov		_	8K bps	0	0	_
		Γ		D	isable		0			11K bps	0	1	1
		ſ		E	nable		1			16K bps	1	0	4
		-								32K bps	1	1	ļ
LABEL	0	1	1	1	L.B.3	LB2 L	B1 LB0	* * LB5 I	.B4		L8 = Ph	rase no	
ADRD	1	0	0	0		1'st re	ad	2'nd re	ad	3'rd read	4th	read	5th read
					A3	A2 4	A1 A0	A7-A	4	A11-A8	A15-	-A12	A19-A16
REC	1	0	0	1							-	_	
DTRD	1	0	1	0		1'st read		2'nd re	ad				
					D3	D2 [01 D0	D7-D	4				
DTWR	1	0	1	1	D3	D2 0	01 D0	D7-D	4		-		

Table 5.3 Command list

* = Don't care

Note

<u>A waiting time of $137\rho_{\rm FS}$ is required between issuing the ADRD / DTRD commands and reading</u> the first nibble data. ($f_{\rm CLK}$ = 512kf12)

9097249 0025016 183 🎟 TOS3

TOSHIBA (UC/UP)

TC8830AF-23

5.5.3 Status Register

The status register consists of 4 bits. When the $\overline{\text{RD}}$ pin is set to L level at the CPU control, data of the status register is came out to P0~P3 pins and the internal operating status of the TC8830AF can be checked. Each flag of the status register is explained in following (Table 5.4).

64Е ⊅ .

(1) OVR flag

It is indicated that the recording ends as the address counter exceeded maximum address of SRAMs under the recording. This status is reset by NOP commands.

(2) BUSY flag

When this flag is set, it indicates that the TC8830AF is in reset state or processing a command internally. Don't give any command from microprocessor. If the command is given, the internal status may possibly becomes uncertainty. When the ADLD1, ADLD2 and LABEL command is issued, until input of required data ends, this flag is not released.

(3) EOS flag

This flag becomes set under the recording / playback waiting state, and reset during recording or playback. The value is the same as a value appeared at the EOS pin.

Table 5.4	Status register
-----------	-----------------

Pins name	P3	P2	P1	PO
Status register		OVR	BUSY	EOS

5.5.4 BUSY Flag

Conditions for setting BUSY flag set are broadly classified into the following conditions.

(1) Reset process

When the \overline{ACL} pin becomes L level, BUSY flag becomes set. When the \overline{ACL} pin returns to H level again, the internal state of TC8830AF is initialized and after all are completed, BUSY flag becomes reset.

(2) Command process

When it is detected that \overline{WR} pins have become H level from L level at the CPU control, BUSY flag becomes set. When the process of command is completed, BUSY flag returns to reset again. The command process is actually started after return of \overline{WR} pin to H level has been detected.

I 9097249 0025017 01T 🎟 TOS3

64E D

TOSHIBA (UC/UP)

Table 5.5 Status register

5.5.5 Command Processing Time

Times required for processing commands are shown below. When commands is issued successively, issue them at intervals of more than these command processing times.

Command (ACL)	processing time
Reset process (ACL)*	24600 / f _{CLK} (sec)
NOP, START, STOP, ADLD1, ADLD2, CNDT, REC, DTWR commands write	35 / f _{CLK} (sec)
LABEL, DTRD, ADRD commands write	70 / f _{CLK} (sec)
Data write of ADLD1, ADLD2, CNDT, DTWR command	35 / f _{CLK} (sec)
Data write of LABEL command	70 / f _{CLK} (sec)
Read access after the DTRD, ADRD command	70 / f _{CLK} (sec)

*Note; No count Oscillation rise time (Oscillation rise time is several mS in case of CSB512)

f_{CLK} = Oscillation frequency (Hz)

5.5.6 Address Overflow Detector

When the address counter exceeds maximum address that is detected by this detector during the recording with LABEL command at the CPU control. Enable or disable of detector is selected by CNDT command.

This detector is enable only at the manual control.

When the address overflow is detected, the recording is stopped, a value of the maximum address is written into the index area of SRAM as the stop address, and then the address counter is preset at address 100 (HEX). In addition, the OVR and EOS flag in the status register is set.

5.5.7 Address Comparator Flipflop

When this flipflop has been set, the recording / playback is stopped if the contents of the address counter agree with those of the stop address register. When it has been reset, the recording / playback is not stopped until the STOP command is given. (Exception : Address overflow in the preceding item).

■ 9097249 0025018 T56 **■** T0S3

TOSHIBA (UC/UP)

64E D 🕅

TC8830AF-25

5.5.8 Change of Internal Blocks

	· · · · · · · · · · · · · · · · · · ·							r	
	Register etc.			Internal flag		EOS Status fla		s flag	
Command (ACL) Index register	Address counter	Stop address register	Bit rate	Address overflow detector	Rec mode	Output (Note)	OVER	EOS (Note)	
ACL	R	R→S (100 _H)	R	R	ENABLE	R	Hievel	R	R
NOP						R		R	
START		START					Llevel		S
STOP		STOP					H level		R
ADLD1		S				R			
ADLD2			S			R			
CNDT				S	S	R			
LABEL	s	S	S						
ADRD						R			
REC						s			
DTRD						R			
DTWR						R			

Table 5.6 Change of internal blocks

S:SET

R:RESET

START : Address counter Operate

STOP : Address counter stop

Brank : No change

(Note) **FOS** flag means that set is '1' and reset is '0'

9097249 0025019 992 🎟 TOS3

TOSHIBA (UC/UP)

64E D.

5.5.9 EOS Delay Time at CPU Control

t _{ED}	MIN	MAX
START	32 / f _{CLK}	48 / f _{CLK}
LABEL (recording)	32 / f _{CLK}	48 / f _{CLK}
LABEL (playback)	48 / f _{CLK}	96 / f _{CLK}

f_{CLK} = Oscillation frequency

Fig.5.13 EOS delay time at CPU control

5.5.10 Modes in CPU Control

There are two modes about both recording and playback at the CPU control.

(1) Direct mode

(2) Label index mode

Designate start / stop address, and bit rate by each command.

Designate phrase by LABEL command, start / stop address are written into the some part (Index area) of SRAM. Refer to section 5.3 LABEL INDEX MODE.

Fig.5.14 Memory map (In case of 256K SRAM)

| 9097249 0025020 604 🎟 TOS3

TOSHIBA (UC/UP)

64E D 👡

TC8830AF-27

5.5.11 Status Change at The CPU Control

At the CPU control, the TC8830AF is controlled by 11 kinds of command. The relations between the recording and playback state and commands which are concerned with the recording and playback operations are as follows.

State Command	START command	LABEL command	STOP command	
Recording Starts recording waiting		Starts recording	Kept in the recording waiting state	
Recording	Don't give the START command	Don't give the LABEL command	Stop recording and returns to the recording waiting state	
Playback waiting	Starts playback	Starts playback	Kept in the playback waiting state	
Playback	Don't give the START command	Don't give the LABEL command	Placed in the playback waiting state (executed two times)	

Fig.5.15 Status change at the CPU control

Fig.5.16 Recording procedure at the LABEL INDEX MODE

0025022 487 **mm** ToS3

TOSHIBA (UC/UP)

64E D 🛬

TC8830AF-29

(2) Playback

Fig.5.17 Reproducing procedure at the LABEL INDEX MODE

2

9097249 0025023 313 **III** TOS3

TOSHIBA (UC/UP)

64E D 🕓

5.5.13 Example for The Flowchart of Recording / Playback at DIRECT MODE

(1) Recording

Fig.5.18 Recording procedure at the DIRECT MODE

TOS3 T TOS3

TOZHIBA (UC/UP)

64E D ~

TC8830AF-31

(2) Reproducing

Fig.5.19 Reproducing procedure at the DIRECT MODE

C8830AF-32

9097249 0025025 196 🎟T0S3

TOSHIBA (UC/UP)

64E D 🛬

5.5.14 Write / Read Data of SRAMs

(1) Data write

Fig.5.21 Data read procedure

TOSHIBA (UC/UP)

64E D .

TC8830AF-33

5.5.15 Read Address

 $\label{eq:ADRD} \mbox{ command is used to read a content of address counter at stop of recording and playback}$

Fig.5.22 Address read procedure

5.5.16 How to DTRD / ADRD Commands

Fig.5.23 How to DTRD / ADRD command

🛛 9097249 0025027 T69 🎟 T0S3

TOSHIBA (UC/UP)

64E D

5.6 Label Index Mode

The recording / playback methods for manual control and the LABEL INDEX MODE at the CPU control are described here.

At the manual control (LABEL command under CPU control), the address is indirectly specified using phrase number and index area in which TC8830AF writes the start addresses and stop address of each phrase. The memory maps of SRAMs at the LABEL INDEX MODE are as follow.

Fig.5.24 Memory map in the LABEL INDEX MODE

Maximum address that can be changed varies depending upon type and quantity of connected SRAMs. In any case, address 0 (HEX) \sim FF (HEX) are used as the index area, and the succeeding address 100 (HEX) and up become the voice data area.

Start address and stop address are recorded in the index area by the TC8830AF at the recording. And data read out from this area are loaded on the address counter at the playback.

5.6.1 Recording of Phrase

In performing the recording newly, Reset the TC8830AF by the \overline{ACL} signal then address counter is preset to 100 (HEX) and 0 clear to index area.

A bit rate and a phrase No. are specified and start signal is issued, then the recording starts. The contents of the address counter (Start address) is written into the index area of SRAM before recording. During the recording, the value of the address counter is increased successively.

When the stop signal is issued during the recording, the recording ends and the contents of the address counter (Stop address) is written into the index area. Thereafter the value of the address counter are added with one to prepare for next recording.

344

TOSHIBA (UC/UP)

64E D .

TC8830AF

To perform the recording for other phrase successively, phrase No. is newly designated and the start signal is issued (Fig.5.25). New phrase No. should be selected more than old phrase.

Fig.5.25 In case of recording two phrases

5.6.2 Playback of Phrase

When any recorded phrase No. is selected and start input is given, voice corresponding to that phrase No. is reproduced. Phrase No. can be designated irrespective of sequence of the recording. Giving the two stop input during playback, this phrase stop.

If the playback is started by designating phrase No. that was not used for the recording, not sound at this phrase.

The playback is started after the start address and stop address are set in the TC8830AF from the index area of SRAM. When the playback ends, the value of the address counter are added with (+1)

5.6.3 Addition of Phrase

First, reproduce the last phrase at the recording completely so that the address counter can indicate the address next to the stop address of the last phrase. Change the playback waiting state to the recording waiting state. Don't reset the TC8830AF at this state. When the recording is made by designating any more than end of recorded phrase No. to be added.

EZOT M 168 PS02500 P27249

64E D

TOSHIBA (UC/UP)

5.6.4 Label Index Mode Operations

The operations of the TC8830AF and SRAMs in LABEL INDEX MODE are described in the following.

Fig.5.26 Recording
🖬 9097249 0025030 553 🔳 TOS3

TOSHIBA (UC/UP)

64E D -

The index register addresses an index area of SRAM according to a start input. 1 Address A0~A14 ① Start input register Index register A0~A14 ¥ Start address, stop address and bit rate are loaded to TC8830AF 0 Index from the index area. area Address Note counter Data area D0~D7 @1/01~1/01 Stop address register ADM analysis and synthesis circuit Note : The address counter addresses a data area of SRAMs. 3 Address A0~A14 🕄 Index register Voice data is fed into ADM 4 register A0~A14 analysis and synthesis circuit to produce voice. Index +1, 6 area The address counter of TC8830AF 6 Note Address is counted up. counter The address counter and the stop address register of the TC8830AF are compared and when they agree with each other, the 16 Data area D0~D7 @1/01~1/08 Stop address register $\sim \sim \sim$ playback stops at next address. If not, steps @ and @ are (ĎÃO)

Fig.5.27 Playback

347

ŋ

repeated.

TC8830AF-37

FC8830AF-38

E 9097249 0025031 49T E TOS3

TOSHIBA (UC/UP)

64E D

ġ

5.6.5 The Index Area

The index area is used for the recording / playback at the manual control and LABEL INDEX MODE at the CPU control. This area consists of 2K bits from address 0 (HEX) to FF (HEX), securing for 63 phrase (32 bits per phrase).

At the recording, start address and stop address of each phrase are written into index area. And at the playback, the contents of this area are read out and set in the address counter, etc. The contents of the index area for each phrase are shown in the table 5.8. A0~A19 denote the start address and A19 represent the most significant bits of them respectively. Further, stop address equal start address of next phrase.

To read out the contents of the index area, obtain the top address of the index area corresponding to each phrase from phrase No., and after setting it in the address counter by the ADLD1 command, read it in unit of 8 bits by the DTRD command. On the contrary, to write data into the index area, after setting the top address of the index area in the same manner as above, write data by the DTWR command.

The index area is cleared to by the ACL signal.

Don't select the start and stop address in index area by ADLD1 or ADLD2 commands at the DIRECT MODE.

1097249 0025032 326 MM T053

TOSHIBA (UC/UP)

64E D .

TC8830AF-39

RAM **RAM Data** Address D7 D6 D5 D4 D3 D2 D1 D0 (HEX) 00_H Α7 A6 Α5 Α4 A3 A2 A1 A0 Start address of 01_H A15 A14 A13 A12 A10 A11 Α9 A8 phrase No.0 02_H ----A19 A18 A17 A16 -03_H --------04_H Α7 A6 Α5 A4 A3 A2 A1 A0 Start address of A15 05_H A13 A12 A14 A11 A10 Α9 A8 phrase No.1 06_H ---A19 A18 A17 A16 • 07_H --_ --_ --08_H Α7 A6 Α5 Α4 A3 A2 A1 A0 Start address of 09_H A15 A14 A13 A12 A11 A10 A9 A8 phrase No.2 0A_H A19 A18 A17 A16 ----0B_H ---_ ----F4_H Α7 A6 A5 A4 A3 A2 A1 A0 Start address of F5_Н A15 A14 A13 A12 A11 A10 A9 A8 phrase No.61 F6_H A19 A18 A17 ----A16 F7_H -----• --F8_H Α7 A6 Α5 A4 A3 A2 A1 A0 Start address of F9_H A15 A14 A13 A12 A11 A10 Α9 A8 phrase No.62 FA_H ----A19 A18 A17 A16 FBH --_ --•• --FCH Α7 A6 Α5 Α4 A3 A2 A1 A0 Stop address of FDH A15 A14 A13 A12 A11 A10 A9 A8 phrase No.62 FEH A19 A17 A16 A18 ----FFH --_ -----

Table 5.8 Memory map of index area

FC8830AF-40

E20T 🖿 545 EE02500 P457P0P 🖿

TOSHIBA (UC/UP)

64E D -

5.7 DMA Function

The TC8830AF has the DMA function at the CPU control. When both the \overline{RD} and \overline{WR} pins are set to L level at the CPU control, the A0~A14, D0~D7, \overline{CE} , $\overline{CE1}$ ~ $\overline{CE4}$ and R/W pins are placed in the high impedance state.

This function is possible to release the connected SRAMs from the TC8830AF.

This function selecting at the recording waiting state or playback waiting state.

Placing DMA function, set the $\overline{\text{RD}}$ pin at H level after setting the $\overline{\text{WR}}$ pin at L level. If the $\overline{\text{RD}}$ pin is first set at L level, the P0~P3 pins are placed in the output state until the $\overline{\text{WR}}$ pin becomes L level.

Releasing DMA function, set the \overline{WR} pin at H level after setting the \overline{RD} pin at H level, write the NOP command into the TC8830AF.

E207 🖿 PT4 10025034 1T9

TOSHIBA (UC/UP)

64E D

TC8830AF-41

5.8 Standby Function

When the STBY pin set at H level under the recording waiting state or playback waiting state, the TC8830AF is placed at standby state. The status is shown below.

- (1) Oscillator stop and low power state.
- (2) Sets the \overline{CE} and $\overline{CE1} \sim \overline{CE4}$ pins at H level, and external SRAMs places to the minimum standby current mode. At this state, the contents of SRAMs can be remained.
- (3) A0, A2~A14, D0~D7, ALE and R/\overline{W} pins at L level.
- (4) A1 and EOS pins at H level.
- (5) Internal pull down resisters are unconnected (P0~P3, RD, WR PH0~PH3).
- (6) D / A converter stops and low power state.
- (7) The microphone amplifier and band pass filter stops and low power state.
- 5.9 Reset Operation
- 5.9.1 The Status Under Reset Operation

When the $\overline{\mathrm{ACL}}$ pin is set at L level, TC8830AF stops all operation such as recording / playback.

Further, BUSY flag in status register becomes set during this period.

5.9.2 The Status After rRset Operation

When the \overline{ACL} pin becomes from L to H level, the internal state of TC8830AF is initialized as shown below.

- (1) Set the playback waiting state.
- (2) Address counter and stop address register are preset to 100 (IIEX).
- (3) 0 clear to index area of SRAMs, ADDRESS OVERFLOW DETECTOR is enable state and ADDRESS COMPARATOR FLIPFLOP is reset.
- (4) At the CPU control, bit rate becomes 8kbps.
- (5) OVR flag in status register are reset.

After terminating the above completely, BUSY flag is reset.

E 207 🖿 260 2602500 P7249 0025035

64E D

TOSHIBA (UC/UP)

5.9.3 Reset Processing After Power On

When the after power on, the following items become unstable.

- (1) Recording and playback state.
- (2) Address counter.
- (3) ADM analysis / synthesis circuit.
- (4) Other processing circuits such as start and stop processing.

Therefore, to initialize this unstable condition and assure proper operations, apply \overline{ACL} signal.

ACL signal to be given after power ON and it's pulse width are shown in Fig.5.29.

Fig.5.29 ACL pulse width

However, if width of t_{DA} after power ON is long, the unstable status lasts and causes malfunction (start recording/playback, etc.) in Fig.5.29.

So, a power on reset circuit is constructed by attaching a 1μ F capacitor to the ACL pin, makes the system initialization is possible immediately after power ON as illustrated in Fig.5.30.

Fig.5.30 Power on reset circuit

_0097249 0025036 T71 🖿 T0S3

TOSHIBA (UC/UP)

64E D .

TC8830AF-4

Fig. 5.31 ACL input at power on reset

However, the power on reset is effective only for a rapid step power rise and <u>when power rise is</u> gentle or power on / off is repeated in short cycle, no system initialization is performed.

Further, if the $\overline{\text{ACL}}$ pin can be controlled by a CPU regardless of power on / off at TC8830AF side, the system initialization can be made as shown in Fig. 5.32

Fig. 5.32 System initialization by CPU control

C8830AF-44 🖿 9097249 0025097 908 🖿 T053

TOSHIBA (UC/UP)

64E D

5.10 Access Timing at SRAM

SRAM access timing is different at manual control and CPU control. Each access timing is shown below and AC characteristics refer to section 6.4.

5.10.1 Recording / Playback at Manual Control

Fig. 5.33 Recording at manual control

9097249 0025038 844 **MM** TOS3

Playback (Force the stop input)

TOSHIBA (UC/UP)

(3)

64E D

TC8830AF-45

100 P3(REC) P0(START) Pause Stop P1(STOP) Ш 1.00 nn Playback EOS A0~A14 //INVALID D0~D7 MINVALID / Ø I H R/₩ CET 7 Stop address Start address reading reading Read cycle (4) Playback (Auto stop) 100 P3(REC) PO(START) Ш 1 00 Address comparator flipflop Playback EOS A0~A14 WINVALID D0~D7 7 INVALID R/₩ CEI 7 IJ Ш Stop address Start address Read cycle reading reading

Fig. 5.34 Playback at manual control

Fig. 5.35 Recording at CPU control with LABEL INDEX MODE

0025040 4T2 **10**7053

TOSHIBA (UC/UP)

(3) Playback (Force the stop command)

64E D ~

Fig.5.36 Playback at CPU control with LABEL INDEX MODE

2

TC8830AF-47

EZOT M PEE 1402500 P47249

Fig.5.37 Recording at CPU control with DIRECT MODE

9097249 0025042 275 **m** T0S3

TOSHIBA (UC/UP)

(3) Playback (Force the stop command)

64E D -

Fig.5.38 Playback at CPU control with DIRECT MODE

Į

TC8830AF-49

■ 9097249 0025043 lOl ■10S3

64E D

TOSHIBA (UC/UP)

5.10.4 Write Cycle

At the recording, TC8830AF is check for number of connected SRAMs. Write timing is explained in following. Further, pulse width etc. refer to section 6.4 AC characteristics.

 $\overline{CE1} \sim \overline{CE4}$ pins select to 4 pieces SRAM. $\overline{CE}(1) \sim (4)$ are

- CE(1) Dummy cycle, invalid
- CE(2) Writing L level to SRAM.
- CE(3) Reading the data of step (2). In case of connected SRAM, read out the data is L level, if not connected, the data is II level by internal pull up resister. Stops to recording when the read out data is H level.
- $\overline{\text{CE}}(4)$ When the read data of step (3) is H level, valid of voice data writing to the SRAM.

ALE pin of fig.5.39 means Address Latch Enable, it's possible to expanse SRAMs up to 8Mbit.

9097249 0025044 048 **m**ToS3

TOSHIBA (UC/UP)

64E D

TC8830AF-51

- 5.11 Precautions
- 5.11.1 At The Both CPU Control and Manual Control.
 - (1) Under the recording / playback, other than stop should not be issued.
 - (2) When the \overline{ACL} pin is L level,0 clear to index area of SRAM.
 - (3) In case of use for standby function, this mode sets at recording / playback waiting state.
- 5.11.2 At The Manual Control.
 - (1) The recording phrase number select at sequence from low order phrase.
 - (2) The maximum address is auto check under the recording, if bad address at SRAMs, stop the recording.
 - (3) In case of use for auto phrase function, not direct access of more than phrase No.16.

5.11.3 At The CPU Control

- (1) Label index mode
 - The recording phrase number select at sequence from low order phrase.
 - The maximum address is auto check under the recording, if bad address at SRAMs, stop the recording.
- (2) Direct mode
 - Don't setting the start and stop address at index area.
 - Setting to stop address more than start address.
- (3) Other
 - Keeps at command processing time for data read of DTRD and ADRD command.
 - Releasing DMA function, set the \overline{WR} pin at H level after setting the \overline{RD} pin at H level, write the NOP command into the TC8830AF.

📕 9097249 0025045 T&4 📰 TOS3

TOSHIBA (UC/UP)

64E D

5.12 Connection of SRAMs

The TC8830AF uses SRAMs (Static RAMs) for the storage of voice data.

Up to 4 pieces of 64K or 256Kbit SRAMs are directly connected to the TC8830AF. But it is impossible to connect together with different capacity SRAMs in capacity. Select of capacity for 64K / 256K is 256K pin.

Fig.5.40 Connection of SRAM (In case of 256K DRAM)

TOSHIBA (UC/UP)

64E D

Fig.5.40 shows the connection with SRAM. In case of two or more SRAMs, $\overline{\text{CE1}}$ pin of TC8830AF must be connected to the $\overline{\text{CE}}$ pin of 1st SRAM, the $\overline{\text{CE2}}$ to the $\overline{\text{CE}}$ of 2nd SRAM and so on, That is, $\overline{\text{CE1}} \sim \overline{\text{CE4}}$ pins must be connected to the $\overline{\text{CE}}$ pins of each SRAM respectively. Other pins for SRAM of TC8830AF may be connected in parallel to every SRAM.

5.13 Clock Generator

TC8830AF has clock generator, ceramic resonator and capacitor are connected between XIN and XOUT pins.

If using external clock, it should be fed to XIN pin directly. (XOU'T should be left open).

(a) Using internal oscillator

(b) Using external oscillator

Fig.5.41 Oscillator

Г<mark>С8830А</mark>F-54

E 9097249 0025047 857 🎟 TOS3

TOSHIBA (UC/UP)

64E D

5.14 Analog Circuit

The TC8830AF incorporates microphone amplifier and band pass filter. Therefore, voice recording / playback system is easily composed with a microphone and an audio amplifier circuit.

5.14.1 Microphone Amplifier Part

Digital ground

Analog ground

Fig.5.42 Connection of microphone

Microphone amplifier includes two stage.

①Between MICIN and C1	
@Between C2 and MICOUT	

→ Gain is about 26dB → Gain is about 20dB

So, there are three ways (), (), and () +(). One is selected according to the type of microphone. C1 or MICOUT pin should be connected to ADI pin at the case of (), (), and () +(), respectively.

Fig.5.43 Shows microphone amplifier characteristic between MICIN and MICOUT with couplings C1 and C2.

Further, when on-chip Microphone amplifier is not used, it is possible to apply voice signal directly into ADI pin. If a voice signal which is applied to ADI pin is not biased to Vref level, a coupling capacitor of about $0.1 \,\mu\text{F} \sim 1\mu\text{F}$ should be inserted into the circuit.

Microphone amplifier not operating under the others of recording waiting state and recording. in case of use for on-chip microphone amplifier, should be a waiting time for change playback waiting state to recording waiting state. This time is about 100ms at the case of connected 0.1 μ F between C1 and C2 pins.

| 9097249 0025049 62T 📰 T0S3

TOSHIBA (UC/UP)

64E D .

5.14.2 Filter Part

The frequency characteristic of the band pass filter which is on chip the TC8830AF is shown in Fig.5.44.

The band pass filter consists of a combination of the 1'st order high pass filter and 2'nd order low pass filter.

E20T 12 1025050 341 TOS3

TOSHIBA (UC/UP)

64E D -

TC8830AF-57

5.14.3 Equivalent Circuit

TOSHIBA (UC/UP)

64E D

6. ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Rating

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Supply voltage	-0.3 ~ 7.0	v
V _{IN}	Input voltage	$-0.3 \sim V_{DD} + 0.3$	v
Vout	Output voltage	$-0.3 \sim V_{DD} + 0.3$	v
Т _{STG}	Storage temperature	- 55 ~ 125	°C

6.2 Recommended Operating Conditions

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Supply voltage	4.5 ~ 6.5	v
V _{IN}	Input voltage	0 ~ V _{DD}	v
V _{OUT}	Output voltage	0 ~ V _{DD}	v
T _{OPR}	Operating temperature	-10 ~ 70	°C
f _{CLK}	Oscillation frequency	512	kHz

9097249 0025052 114 🎟 TOS3

TOSHIBA (UC/UP)

64E D

TC8830AF-59

6.3 DC Characteristics ($V_{DD} = 5V \pm 10\%$, Ta = 25°C)

SYMBOL	п	ΈM	CONDITION	MIN.	TYP.	MAX.	UNIT
fclki	Operating freque	ency 1	Manual control or LABEL INDEX MODE at CPU control	400	512	600	kHz
f _{CLK2}	Operating frequ	ency 2	DIRECT MODE at CPU control	250	512	1000	
lanı	Input high currer (P0~P3 , WR , RD		V _{IN} = VDD , CPUM = L	10	50	150	
l _{IH2}	Input high curre	nt 2 (TEST)	V _{IN} = VDD	50	100	500	
I _{IL1}	Input low curren	t 1 (D0~D7)	V _{IN} = 0V	10	50	150	μA
l _{IL2}	Input low curren	t 2 (ACL)	V _{IN} = 0V	100	500	1000	
l _{iLK}	Input leakage cu	rrent	V _{IN} = 0~V _{DD} , CPUM = H	-	-	1.0	
lolk	Output leakage	current	$V_{IN} = 0 \sim V_{DD}$, \overline{WR} , $\overline{RD} = L$	-	-	1.0	
VIH1	Input high voltag	ge i	P0~P3 , WR , RD	2.4		-	
V _{IH2}	Input high voltag	ge 2	Except above	3.4	_	-	
V _{IL1}	Input low voltag	e 1	P0~P3 , WR , RD	-	_	0.8	l v
VIL2	Input low voltag	e 2	Except above	-	-	0.6]
I _{OH}	Output high curr	ent	V _{OUT} = 2.4 V	0.4	-	-	
loL	Output low curre	ent	V _{OUT} = 0.4V	0.4	-	_	[mA
Issio	Supply	Operation mode	Under no signal l _{OUT} ≓ 0 mA		-	3	mA
Issis	current 1 (V _{SS1})	Standby mode	Under no signal l _{OUT} = 0 mA	-	-	3	μA
I _{\$\$20}	Supply	Operation mode	Under no signal I _{OUT} = 0 mA	-	-	3	mA
I _{\$\$2\$}	current 2 (V _{SS2})	Standby mode	Under no signal I _{OUT} = 0 mA	-	-	3	μA
Vour	Reference voltag	ge of analog part	Vref	-	2.8	_	v

Precautions :

1) Each TYP. value is measured under VDD=5.0V, Ta=25°C.

2) MIN. MAX. values are defined by their absolute values.

3) Supply current measured by external oscillator of 512kHz.

E 207 🖿 0.02 E 202500 P097249

TOSHIBA (UC/UP)

64E D -

- 6.4 AC Characteristics ($V_{DD} = 5V$, Ta = 25°C, CL = 50pF)
- 6.4.1 Data Write

(1) Except data write after the DTWR command (command write)

SYMBOL	ITEM	MIN.	TYP.	MAX.	UNIT
t _{DS}	Data set up time	0			
t _{DH}	Data hold up time	200			ns
twrp	WR pulse width	400			

• V_{OH} = 2.4V • V_{OL} = 0.8V

(2) Data write after the DTWR command

SYMBOL	ITEM	MIN.	ТҮР.	MAX.	UNIT
t _{DWS}	Data write set up time	0		-	
towh	Data write hold time	500 + t _H	-	1	ns

t_{H =} Data hold time of SRAM

9097249 0025054 T97 🔳 T0S3

TOSHIBA (UC/UP)

64E D :

6.4.2 Data Read

(1) Status read

(2) Address read

(3) Data read after the DTRD command

SYMBOL	ITEM	MIN.	TYP.	MAX.	UNIT
tRAC	Data read access time			2+t _{AC}	
t _{RDP}	Data read RD pulse width	3+t _{AC}			μS

t_{AC} = Access time of SRAM

TC8830AF-61

371

9097249 0025055 923 🎟 TOS3

TOSHIBA (UC/UP)

64E D

6.4.3 Write Cycle of Start Address and Stop Address

(at the Manual control and LABEL INDEX MODE in the CPU control)

SYMBOL	IT'EM	MIN.	TYP.	MAX.	UNIT
t _{CEP}	CE pulse width	—	1/2fCLK		
t _{MWC}	Memory write cycle time	-	4 / fCLK	-	
t _{MAS}	Memory address set up time		3/fCLK		
t _{MAH}	Memory address hold time		1/2fCLK		sec.
t _{MDS}	Memory data set up time		7/2fCLK		
tMDH	Memory data hold time	-	1/2fCLK	—	

9097249 0025056 86T **III**7053

TOSHIBA (UC/UP)

64E D

TC8830AF-63

6.4.4 Read Cycle of Start Address and Stop Address(at the Manual control and LABEL INDEX MODE in the CPU control)

SYMBOL	ITEM	MIN.	TYP.	MAX.	UNIT
t _{MRS}	Memory read command set up time		3/fCLK	_	
tMRH	Memory read command hold time	-	1/2fCLK		sec.
tMRC	Memory read write cycle	-	4/fCLK		
t _{CESA}	Memory data set up time	600	_	-	
tCEH	Memory data hold time	0	_		ns

■ 9097249 0025057 7T6 **■**■T0S3

TOSHIBA (UC/UP)

64E D

6.4.5 Voice Data Write Cycle

SYMBOL			BIT RATE				
	ITEM	32Kbps	16Kbps	11Kbps	8Kbps	UNIT	
twc	Write cycle time	128/fCLK	256 / fCLK	384 / fCLK	512/fCLK		
tvcep	Voice data CE pulse width	4/fCLK	4/fCLK	4/fCLK	4/fCLK		
tvaw	Write address set up time	4/fCLK	4/fCLK	4/fCLK	4/fCLK		
t _{VDH}	Voice data hold time	8/fCLK	24/fCLK	40/fCLK	56/fCLK		
tDALE	ALE delay time	36/fCLK	68/ ICLK	100/fCLK	132 / fCLK	sec.	
talep	ALE pulse width	4/fCLK	4/fCLK	4/fCLK	4/fCLK		
t _{HAH}	High order address hold time	88/fCLK	184 / fCLK	280 / fCLK	376 / fCLK		
t _{DRW}	R/₩delay time	96 / fCLK	192 / fCLK	288 / fCLK	384 / fCLK		
twrw	R/W pulse width	16/fCLK	32/fCLK	48/fCLK	64/fCLK		

9097249 0025058 632 🎟 TOS3

TOSHIBA (UC/UP)

64E D

TC8830AF-65

6.4.6 Voice Data Read Cycle

SYMBOL			BIT RATE				
	ITEM	32Kbps	16Kbps	11Kbps	8Kbpş	UNIT	
t _{RC}	Read cycle time	128/fCLK	256 / fCLK	384/ (CLK	512/fCLK	sec.	
t _{AR}	Read address set up time	4/fCLK	4/fCLK	4/fCLK	4/fCLK	sec.	

E2077249 0025059 579 🖿 TOS3

TOSHIBA (UC/UP)

64E D (

6.4.7 DMA Function

SYMBOL	ITEM	MIN.	TYP.	MAX.	UNIT
twrl	Write to read disable time	1.0		-	μs
t _{RWL}	Read to write disable time	100			[
t _{DR}	Hi-z delay time			300	
tow	Data set delay time			300	ns
t _{DS}	Data set up time	0	_		
t _{DH}	Data hold time	200	-		

9097249 0025060 290 **m** TOS3

TOSHIBA (UC/UP)

64E D ∽

TC8830AF-67

6.5 Characteristics of Analog Circuit (Unless otherwise specified : VSS1 = VSS2 = 0V, VDD = 5V, Ta = 25 °C, fin = 1 kHz)

6.5.1 Microphone Amplifier

SYMBOL	ITEM	PINS	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{IN1}	Range of input voltage	MICIN	MICAMP (1) + (2)	-	12	16	
V _{IN2}		MICIN	MICAMP (1)	-	120	160	mV _{p∼p}
V _{IN3}		C2	MICAMP (2)	-	240	320	
Gvı	Pass band gain	MICIN MICOUT	$V_{IN} = 6mV_{p-p}$	-	46	-	
G _{V2}		MICIN C1	f _{IN} = 100Hz~10kHz Output load = 100kΩ , 30pF	-	26	-	dB
G _{V3}		C2 MICOUT		-	20	-	
THD	Total harmonic distortion	MICIN MICOUT	V _{IN} = 6mV _{p ~ p}	-	-	2	%
RINI	Input impedance	MICIN			30	-	kΩ
R _{IN2}		C2	-		30	-	
R _{OUT1}	Output impedance	C1		-	- 7 - - 7 -	-	kΩ
R _{OUT2}		MICOUT	-	-		-	

6.5.2 Band Pass Filter

SYMBOL	ITEM	PINS	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{IN}	Range of input voltage	FILIN	-	-	-	4.0	V _{p-p}
Gγ	Pass band gain	FILIN FILOUT	V _{IN} = 1.0V _{p-p} Output load = 100kΩ , 30pF	-	-	0	dB
THD	Total harmonic distortion	FILIN FILOUT	$V_{iN} = 1.0V_{p-p}$		-	4	%
R _{IN}	Input impedance	FILIN	-	-	7	-	ΜΩ
Rout	Output impedance	FILOUT	-	-	5	-	kΩ

E20T 127 127 202500 P457P0P

TOSHIBA (UC/UP)

64E D 🔍

6.5.3 Audio In

SYMBOL	ITEM	PIN	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{IN}	Range of input voltage	ADI	-	-	-	3.2	V _{p-p}
R _{iN}	Input impedance	ADI	-	-	50	-	kΩ

6.5.4 Audio Out

SYMBOL	ITEM	PIN	CONDITION	MIN.	TYP.	MAX.	UNIT
R _{OUT}	Output impedance	DAO	_	-	5	-	kΩ

E20T 📰 E40 2402500 P47249

TC8830AF-69

TOSHIBA (UC/UP)

64E D.

7. OUTLINE DRAWINGS

67 PIN FLAT PACKAGE (67-4-BS)

9097249 0025063 TTT **MM** TOS3

TOSHIBA (UC/UP)

64E D

