TOSHIBA

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# TC74LCX16245AFT

### LOW-VOLTAGE 16-BIT BUS TRANSCEIVER WITH 5V TOLERANT INPUTS AND OUTPUTS

The TC74LCX16245AFT is a high performance CMOS 16bit BUS TRANSCEIVER. Designed for use in 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3V) V<sub>CC</sub> applications, but it could be used to interface to 5V supply environment for both inputs and outputs. This 16bit bus transceiver is controlled by direction control (DIR) inputs and output enable ( $\overline{OE}$ ) inputs which are common to each byte. It can be used as two 8bit transceiver or one 16bit transceiver. The direction of data transmission is determined by the level of the DIR inputs. The  $\overline{OE}$  inputs can be used to disable the device so that the busses are effectively isolated.



Weight : 0.25g (Typ.)

**PIN CONNECTION** 

All inputs are equipped with protection circuits against static discharge.

#### FEATURES

- Low Voltage Operation : V<sub>CC</sub> = 2.0~3.6V
- High Speed Operation :  $t_{pd} = 5.2 \text{ ns} (\text{max.}) \text{ at } V_{CC} = 3.0 \sim 3.6 \text{V}$
- Output Current :  $|I_{OH}| / I_{OL} = 24$ mA (MIN) at  $V_{CC} = 3.0V$
- Latch-up Performance : ± 500mA
- Package : TSSOP

(Thin Shrink Small Outline Package)

- Bidirectional interface between 5V and 3.3V signals.
- Power Down Protection is provided on all inputs and outputs NOTE
- 1) Do not apply a signal to any bus terminal when it is in the output mode. Damage may result.
- .2) All floating (high impedance) bus terminal must have their input level fixed by means of pull up or pull down resistors.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

|      | <b></b> |    |     |
|------|---------|----|-----|
| 1DIR | 10      | 48 | 1OE |
| 1B1  | 2       | 47 | 1A1 |
| 1B2  | 3       | 46 | 1A2 |
| GND  | 4       | 45 | GND |
| 1B3  | 5       | 44 | 1A3 |
| 1B4  | 6       | 43 | 1A4 |
| Vcc  | 7       | 42 | Vcc |
| 1B5  | 8       | 41 | 1A5 |
| IB6  | 9       | 40 | 1A6 |
| GND  | 10      | 39 | GND |
| 1B7  | 11      | 38 | 1A7 |
| 1B8  | 12      | 37 | 1A8 |
| 2B1  | 13      | 36 | 2A1 |
| 2B2  | 14      | 35 | 2A2 |
| GND  | 15      | 34 | GND |
| 2B3  | 16      | 33 | 2A3 |
| 2B4  | 17      | 32 | 2A4 |
| Vcc  | 18      | 31 | Vcc |
| 2B5  | 19      | 30 | 2A5 |
| 2B6  | 20      | 29 | 2A6 |
| GND  | 21      | 28 | GND |
| 2B7  | 22      | 27 | 2A7 |
| 2B8  | 23      | 26 | 2A8 |
| 2DIR | 24      | 25 | 20E |

(TOP VIEW)

961001EBA2

#### TRUTH TABLE

| INP              | INPUT |                | FUNCTION       |        |  |
|------------------|-------|----------------|----------------|--------|--|
| 1 <del>0</del> E | 1DIR  | BUS<br>1A1-1A8 | BUS<br>1B1-1B8 | OUTPUT |  |
| L                | L     | OUTPUT         | INPUT          | A = B  |  |
| L                | Н     | INPUT          | OUTPUT         | B = A  |  |
| Н                | Х     | High Im        | Z              |        |  |

| INPUT            |      | FUNC           |                |        |
|------------------|------|----------------|----------------|--------|
| 2 <del>0</del> E | 2DIR | BUS<br>2A1-2A8 | BUS<br>2B1-2B8 | OUTPUT |
| L                | L    | OUTPUT         | INPUT          | A = B  |
| L                | н    | INPUT          | OUTPUT         | B = A  |
| Н                | Х    | High Impedance |                | Z      |

X : Don't Care

Z : High impedance

#### IEC LOGIC SYMBOL



#### SYSTEM DIAGRAM



961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

#### MAXIMUM RATINGS

| PARAMETER                                         | SYMBOL           | RATING                             | UNIT |  |
|---------------------------------------------------|------------------|------------------------------------|------|--|
| Power Supply Voltage                              | V <sub>CC</sub>  | -0.5~7.0                           | V    |  |
| DC Input Voltage (DIR, OE)                        | VIN              | -0.5~7.0                           | V    |  |
| DC Bus I/O Voltage                                | Vicio            | -0.5~7.0 (Note 1)                  | v    |  |
| DC Bus 170 Voltage                                | VI/O             | -0.5~V <sub>CC</sub> +0.5 (Note 2) |      |  |
| Input Diode Current                               | IIК              | - 50                               | mA   |  |
| Output Diode Current                              | Іок              | ±50 (Note 3)                       | mA   |  |
| DC Output Current                                 | Ιουτ             | ± 50                               | mA   |  |
| Power Dissipation                                 | PD               | 400                                | mW   |  |
| DC V <sub>CC</sub> /Ground Current Per Supply Pin | ICC/IGND         | ± 100                              | mA   |  |
| Storage Temperature                               | T <sub>stg</sub> | - 65~150                           | °C   |  |

(Note 1) Output in Off-State

(Note 2) High or Low State. IOUT absolute maximum rating must be observed.

(Note 3) V<sub>OUT</sub><GND, V<sub>OUT</sub>>V<sub>CC</sub>

#### **RECOMMENDED OPERATING RANGE**

| PARAMETER                | SYMBOL           | RATING                           | UNIT   |  |  |
|--------------------------|------------------|----------------------------------|--------|--|--|
| Supply Voltage           | Maa              | 2.0~3.6                          | v      |  |  |
| Supply Voltage           | VCC              | V <sub>CC</sub> 1.5~3.6 (Note 4) |        |  |  |
| Input Voltage (DIR, OE)  | VIN              | 0~5.5                            | V      |  |  |
| Bus I/O Voltage          | N/ / a           | 0~5.5 (Note 5)                   | v      |  |  |
| Bus 170 Voltage          | VI/O             | 0~ V <sub>CC</sub> (Note 6)      | v      |  |  |
| Output Current           |                  | ±24 (Note 7)                     |        |  |  |
| Output Current           | IOH / IOL        | ± 12 (Note 8)                    | mA     |  |  |
| Operating Temperature    | T <sub>opr</sub> | - 40~85                          | °C     |  |  |
| Input Rise And Fall Time | dt/dv            | 0~10 (Note 9)                    | ns / V |  |  |

- (Note 4) Data Retention Only
- (Note 5) Output in Off-State
- (Note 6) High or Low State
- (Note 7)  $V_{CC} = 3.0 \sim 3.6V$
- (Note 8)  $V_{CC} = 2.7 \sim 3.0V$
- (Note 9)  $V_{IN} = 0.8 \sim 2.0 V$ ,  $V_{CC} = 3.0 V$

### ELECTRICAL CHARACTERISTICS

DC characteristics (Ta =  $-40 \sim 85^{\circ}$ C)

| PARA                       | METER               | SYMBOL          | TEST                                                                              | CONDITION                 | V <sub>CC</sub> (V) | MIN.                     | MAX.  | UNIT |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
|----------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------|---------------------------|---------------------|--------------------------|-------|------|--|--|--|--|--|--|--|--|--|--|--|--|--|------------|------------|--|--|------------|------------|--|------------------------|-----|---|-----|
| Input                      | "H" Level           | VIH             |                                                                                   |                           | 2.7~3.6             | 2.0                      | _     | V    |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Voltage                    | "L" Level           | VIL             |                                                                                   |                           | 2.7~3.6             | _                        | 0.8   | V    |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
|                            |                     |                 |                                                                                   | l <sub>OH</sub> = – 100μA | 2.7~3.6             | V <sub>CC</sub><br>- 0.2 | _     |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Output                     | "H" Level           | ∨он             | V <sub>IN</sub> =<br>V <sub>IH</sub> or V <sub>IL</sub>                           | I <sub>OH</sub> = – 12mA  | 2.7                 | 2.2                      |       | V    |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Output                     |                     |                 |                                                                                   | I <sub>OH</sub> = – 18mA  | 3.0                 | 2.4                      |       |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Voltage                    |                     |                 |                                                                                   | I <sub>OH</sub> = - 24mA  | 3.0                 | 2.2                      | _     |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
|                            |                     |                 | N/                                                                                | l <sub>OL</sub> = 100μA   | 2.7~3.6             | _                        | 0.2   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
|                            | "L" Level           | Max             | V <sub>IN</sub> =<br>V <sub>IH</sub> or V <sub>IL</sub>                           | I <sub>OL</sub> = 12mA    | 2.7                 | _                        | 0.4   | v    |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
|                            | L Levei             | VOL             |                                                                                   |                           |                     |                          |       |      |  |  |  |  |  |  |  |  |  |  |  |  |  | AIH OL AIL | VIH OL VIL |  |  | VIH OF VIL | ALH OL ALL |  | I <sub>OL</sub> = 16mA | 3.0 | _ | 0.4 |
|                            |                     |                 |                                                                                   | I <sub>OL</sub> = 24mA    | 3.0                 | _                        | 0.55  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Input Leaka                | age Current         | <sup>I</sup> IN | V <sub>IN</sub> = 0~5.5V                                                          |                           | 2.7~3.6             | _                        | ± 5.0 | μA   |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| 3-State Out<br>Off-State C | -                   | loz             | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br>V <sub>OUT</sub> = 0~5.5V |                           | 2.7~3.6             | —                        | ± 5.0 | μΑ   |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Power Off<br>Current       | Leakage             | lOFF            | V <sub>IN</sub> / V <sub>OUT</sub> = 5.5V                                         |                           | 0                   | _                        | 10.0  | μΑ   |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Quiescent S                | Supply              | 1               | VIN = VCC C                                                                       | or GND                    | 2.7~3.6             | _                        | 20.0  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Current                    |                     | lcc             | $V_{IN} / V_{OUT} = 3.6 \sim 5.5 V$                                               |                           | 2.7~3.6             | _                        | ±20.0 | μΑ   |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |
| Increase In<br>Input       | I <sub>CC</sub> Per | ∆ا              | $V_{\rm IH} = V_{\rm CC} - 0.6V$                                                  |                           | 2.7~3.6             |                          | 500   | μΑ   |  |  |  |  |  |  |  |  |  |  |  |  |  |            |            |  |  |            |            |  |                        |     |   |     |

AC characteristics (Ta =  $-40 \sim 85^{\circ}$ C)

| PARAMETER              | SYMBOL            | TEST CONDITION | V <sub>CC</sub> (V) | MIN. | MAX. | UNIT |
|------------------------|-------------------|----------------|---------------------|------|------|------|
| Propagation Delay      | t <sub>pLH</sub>  | (Fig.1, 2)     | 2.7                 | _    | 6.2  |      |
| Time                   | t <sub>pHL</sub>  |                | 3.3±0.3             | 1.5  | 5.2  | ns   |
| 3-State Output Enable  | t <sub>pZL</sub>  | (Fig.1, 3)     | 2.7                 | _    | 7.5  |      |
| Time                   | t <sub>pZH</sub>  |                | 3.3±0.3             | 1.5  | 6.5  | ns   |
| 3-State Output Disable | t <sub>pLZ</sub>  | (Fig.1, 3)     | 2.7                 | _    | 7.0  |      |
| Time                   | t <sub>pHZ</sub>  |                | 3.3±0.3             | 1.5  | 6.0  | ns   |
| Output To Output       | tosLH             | (Note 10)      | 2.7                 | _    | _    | 20   |
| Skew                   | t <sub>osHL</sub> |                | 3.3±0.3             | _    | 1.0  | ns   |

(Note 10) Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$ 

Dynamic switching characteristics

(Ta = 25°C, Input  $t_r = t_r = 2.5$ ns, CL = 50pF, RL = 500 $\Omega$ )

| PARAMETER                           | SYMBOL           | TEST CONDITION                               | V <sub>CC</sub> (V) | ТҮР | UNIT |
|-------------------------------------|------------------|----------------------------------------------|---------------------|-----|------|
| Quiet Output Maximum Dynamic<br>VOL | V <sub>OLP</sub> | V <sub>IH</sub> = 3.3V, V <sub>IL</sub> = 0V | 3.3                 | 0.8 | V    |
| Quiet Output Minimum Dynamic<br>VOL | νοιν             | V <sub>IH</sub> = 3.3V, V <sub>IL</sub> = 0V | 3.3                 | 0.8 | V    |

Capacitive characteristics  $(Ta = 25^{\circ}C)$ 

| PARAMETER                     | SYMBOL           | TEST CON                | DITION    | V <sub>CC</sub> (V) | ТҮР | UNIT |
|-------------------------------|------------------|-------------------------|-----------|---------------------|-----|------|
| Input Capacitance             | C <sub>IN</sub>  | DIR, OE                 |           | 3.3                 | 7   | рF   |
| Bus Input Capacitance         | C <sub>I/O</sub> | An, Bn                  |           | 3.3                 | 8   | pF   |
| Power Dissipation Capacitance | C <sub>PD</sub>  | f <sub>IN</sub> = 10MHz | (Note 11) | 3.3                 | 25  | pF   |

(Note 11) C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation :

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 16.$  (Per bit)

## **TOSHIBA**

Fig.1 Test circuit



| PARAMETER                           | SWITCH |
|-------------------------------------|--------|
| t <sub>pLH</sub> , t <sub>pHL</sub> | Open   |
| t <sub>pLZ</sub> , t <sub>pZL</sub> | 6.0V   |
| t <sub>pHZ</sub> , t <sub>pZH</sub> | GND    |

#### AC WAVEFORM

Fig.2 t<sub>pLH</sub>, t<sub>pHL</sub>



### Fig.3 t<sub>pLZ</sub>, t<sub>pHZ</sub>, t<sub>pZL</sub>, t<sub>pZH</sub>



#### OUTLINE DRAWING TSSOP48-P-0061-0.50





Weight : 0.25g (Typ.)