TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC590AP,TC74HC590AF

8-Bit Binary Counter/Register with 3-State Outputs

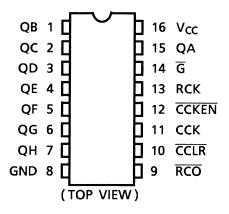
The TC74HC590A is a high speed CMOS 8-BIT COUNTER/REGISTER fabricated with silicon gate C²MOS technology.

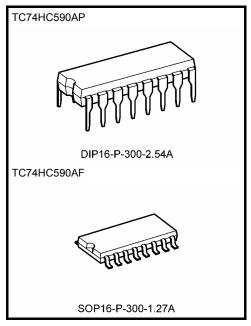
It achieves the high speed operation similar to epuivalent LSTTL while maintaining the CMOS low power dissipation.

The internal counter counts on the positive going edge of Counter Clock (CCK) when Counter Clock Enable ($\overline{\text{CCKEN}}$) is low. When Counter Clear ($\overline{\text{CCLR}}$) is low, the internal counter is cleared asynchronously to the clock.

Data in the internal counter are loaded into the register at positive going edge of Register Clock (RCK), and the register outputs are controlled by enable input (\overline{G}).

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

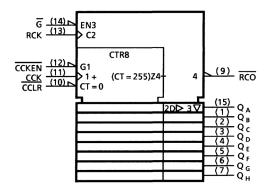

Features

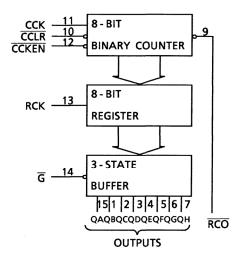

- High speed: $f_{max} = 62 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 15 LSTTL loads for QA to QH 10 LSTTL loads for $\overline{\text{RCO}}$
- Symmetrical output impedance: | I_{OH} | = I_{OL} = 6 mA (min)

For QA to QH $|I_{OH}| = I_{OL} = 4 \text{ mA (min)}$ For \overline{RCO}

- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS590

Pin Assignment




Weight

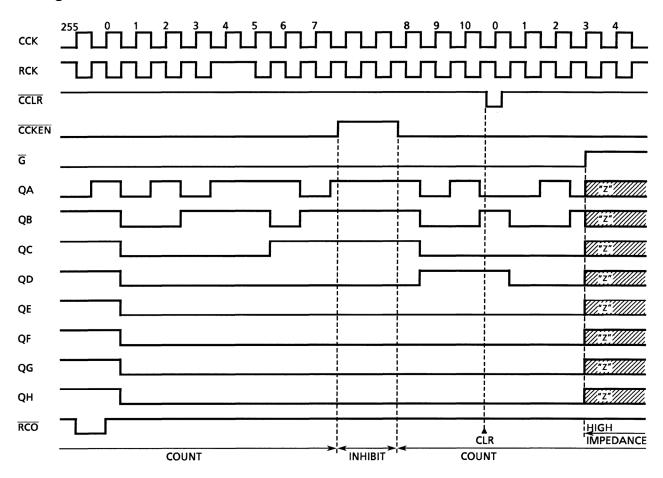
DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.)

IEC Logic Symbol

Block Diagram

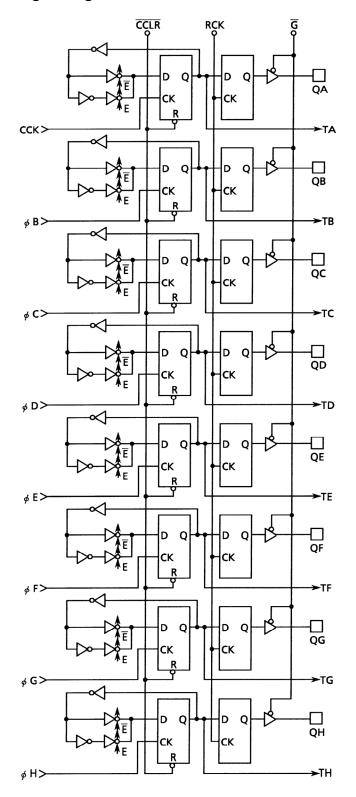
Truth Table

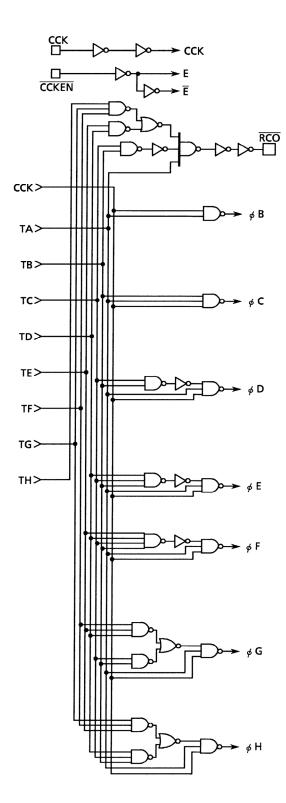
		Inputs			Function
G	RCK	CCLR	CCKEN	ССК	FullClion
Н	Х	Х	Х	Х	Q Outputs Disable
L	Х	Х	Х	Х	Q Outputs Enable
Х		Х	Х	Х	Counter Data is Stored into Register
Х	_	Х	Х	Х	Register State is not Changed
Х	Х	L	Х	Х	Counter Clear
Х	Х	Н	L		Advance One Count
Х	Х	Н	L	—	No Count
Х	Х	Н	Н	Х	No Count


2

X: Don't care

 $\overline{RCO} = \overline{QA' \cdot QB' \cdot QC' \cdot QD' \cdot QE' \cdot QF' \cdot QG' \cdot QH'}$


(QA' to QH': internal outputs of the counter)


Timing Chart

3

Logic Diagram

4

Absolute Maximum Ratings (Note 1)

Characteristic	cs	Symbol	Rating	Unit	
Supply voltage range		V_{CC}	–0.5 to 7	V	
DC input voltage		V_{IN}	−0.5 to V _{CC} + 0.5	V	
DC output voltage		V _{OUT}	-0.5 to V _{CC} + 0.5	V	
Input diode current		I _{IK}	±20	mA	
Output diode current		lok	±20	mA	
DC output current	(RCO)	lour	±25	mA	
DC output current	(QA to QH)	lout	±35	IIIA	
DC V _{CC} /ground current		Icc	±75	mA	
Power dissipation		P_{D}	500 (DIP) (Note 2)/180 (SOP)	mW	
Storage temperature		T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to $65^{\circ}C$. From Ta = 65 to $85^{\circ}C$ a derating factor of -10 mW/°C shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 ($V_{CC} = 2.0 \text{ V}$)	
Input rise and fall time	t _r , t _f	0 to 500 ($V_{CC} = 4.5 \text{ V}$)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

5

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			-	Га = 25°C		Ta –40 to	Unit		
Ondracteristics	Cymbol				V _{CC} (V)	Min	Тур.	Max	Min	Max	Onit
					2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}			_	4.5	3.15	_	_	3.15	_	V
					6.0	4.20	_	_	4.20	_	
					2.0	_	_	0.50	_	0.50	
Low-level input voltage	V_{IL}			_	4.5	_	_	1.35	_	1.35	V
· ·					6.0	_	—	1.80	—	1.80	
					2.0	1.9	2.0	_	1.9	_	
		V _{IN} = V _{IH}	or V _{IL}	$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	
					6.0	5.9	6.0	_	5.9	_	
High-level output voltage	V _{OH}	Н	RCO	$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	V
			RCO	$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80		5.63	_	-
			QA to	$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			QH	$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80		5.63	_	
					2.0	_	0.0	0.1	_	0.1	
		V _{IN} = V _{IH}	or VII	$I_{OL} = 20 \ \mu A$	4.5	_	0.0	0.1	_	0.1	1
		""			6.0		0.0	0.1	_	0.1	
Low-level output voltage	V_{OL}		RCO	$I_{OL} = 4 \text{ mA}$	4.5		0.17	0.26	_	0.33	V
J			RCO	$I_{OL} = 5.2 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
			QA to	I _{OL} = 6 mA	4.5	_	0.17	0.26	_	0.33	
			QH	$I_{OL} = 7.8 \text{ mA}$	6.0		0.18	0.26	_	0.33	
3-state output off-state current	I _{OZ}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND			6.0	_	_	±0.5	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND			6.0			±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} =	V _{CC} or G	ND	6.0	_	_	4.0	_	40.0	μА

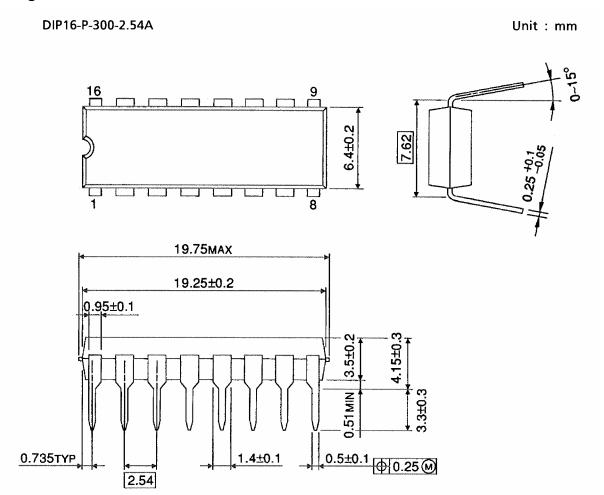
Timing Requirements (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	est Condition			Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width	twa n		2.0	_	75	95	
(CCK, RCK)	tw (H)	_	4.5	_	15	19	ns
(CON, NON)	t _{W (L)}		6.0		13	16	
Minimum pulse width			2.0	_	75	95	
(CCLR)	t _{W (L)}	_	4.5	_	15	19	ns
(COLK)			6.0		13	16	
Minimum set-up time			2.0		100	125	
(CCKEN-CCK)	ts	_	4.5	_	20	25	ns
(COREN-COR)			6.0	_	17	21	
Minimum set-up time			2.0		200	250	
	ts	_	4.5	_	40	50	ns
(CCK-RCK)			6.0	_	34	43	
			2.0	_	0	0	
Minimum hold time	t _h	_	4.5	_	0	0	ns
			6.0	_	0	0	
A distinguishment of the control of			2.0	_	75	95	
Minimum removal time	t _{rem}	_	4.5	_	15	19	ns
(CCLR)			6.0	_	13	16	
			2.0	_	6	5	
Clock frequency	f	_	4.5	_	33	26	MHz
			6.0	_	39	31	

AC Characteristics (C $_L$ = 15 pF, V_{CC} = 5 V, Ta = 25 $^{\circ}C,$ input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time (RCO)	t _{TLH} t _{THL}	_	_	4	8	ns
Propagation delay time (CCK- RCO)	t _{pLH}	_	_	18	28	ns
Propagation delay time (CCLR - RCO)	t _{pLH}	_	_	20	30	ns
Maximum clock frequency	f _{max}	_	32	62	_	MHz

AC Characteristics (input: $t_r = t_f = 6$ ns)

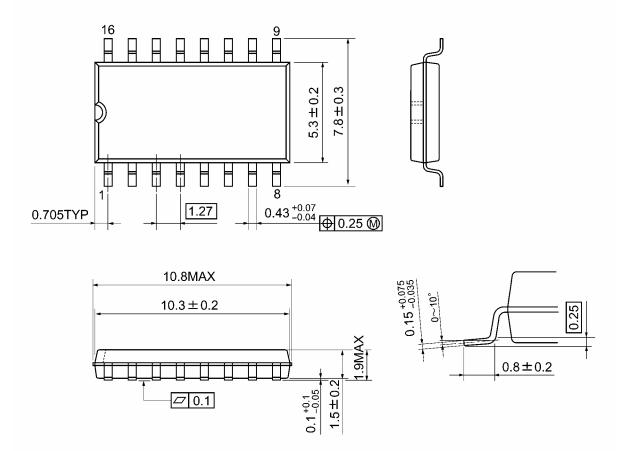

Characteristics	Symbol	Test Condition Symbol		Ta =				Ta = -40 to 85°C		Unit
Gharacteristics	Symbol		CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
Output transition time	tTLH			2.0	_	25	60	_	75	
(Qn)	t _{THL}	_	50	4.5	_	7	12	_	15	ns
(Q11)	THL			6.0	_	6	10	_	13	
Output transition time	t _{TLH}			2.0	_	30	75	_	95	
(RCO)	t _{THL}	_	50	4.5	_	8	15	_	19	ns
(1100)	THL			6.0	_	7	13	_	16	
Propagation delay	t			2.0	_	75	163	_	205	
time	t _{pLH}	_	50	4.5	_	22	33	_	41	ns
(CCK-RCO)	t _{pHL}			6.0	_	17	28	_	35	
Propagation delay				2.0	_	78	175	_	220	
time	t_{pLH}	_	50	4.5	_	23	35	_	44	ns
(CCLR - RCO)				6.0		18	30		37	
				2.0	_	62	145	_	180	
			50	4.5	_	19	29	_	36	
Propagation delay time	t_{pLH}			6.0	_	15	25	_	31	ns
(RCK-Qn)	t_{pHL}	_		2.0	_	78	185	_	230	115
,			150	4.5	_	24	37	_	46	
				6.0	_	19	31	_	39	
				2.0	_	43	105	_	130	
			50	4.5	_	14	21	_	26	
Output anabla tima	t_{pZL}	D: 110		6.0	_	12	18	_	22	no
Output enable time	t_{pZH}	$R_L = 1 k\Omega$		2.0	_	58	150	_	190	ns
			150	4.5	_	19	30	_	38	
				6.0	_	16	26	_	33	
				2.0		33	105	_	130	
Output disable time	t _{pLZ}	$R_L = 1 \text{ k}\Omega$	50	4.5	_	16	21	_	26	ns
	t _{pHZ}			6.0	_	12	18	_	22	
				2.0	6	12	_	5	_	
Maximum clock frequency	f _{max}	_	50	4.5	30	51	_	24	_	MHz
4000)				6.0	35	80	_	28	_	
Input capacitance	C _{IN}	_			_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)	_		_	_	34	_	_	_	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Package Dimensions



9

Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.