TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic # TC74HC423AP,TC74HC423AF # Dual Retriggerable Monostable Multivibrator The TC74HC423A is a high speed CMOS MONOSTABLE MULTIVIBRATOR fabricated with silicon gate C^2MOS technology. It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. There are two trigger inputs, \overline{A} input (negative edge), and B input (positive edge). These inputs are valid for a slow rise/fall time signal (tr = tf = 1 s) as they are schmitt trigger inputs. After triggering, the output stays in a MONOSTABLE state for a time period determined by the external resistor and capacitor (Rx, Cx). A low level at the $\overline{\text{CLR}}$ input breaks this state. In the MONOSTABLE state, if a new trigger is applied, it extends the MONOSTABLE period (retrigger mode). Limitations for Cx and Rx are: External capacitor, Cx: No limit External resistor, Rx: $V_{\rm CC}$ = 2.0 V more than 5 $k\Omega$ $V_{CC} \ge 3.0 \text{ V}$ more than $1 \text{ k}\Omega$ All inputs are equipped with protection circuits against static discharge or transient excess voltage. # Features (Note) - High speed: $t_{pd} = 25 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$ - Low power dissipation Standby state: $I_{\rm CC}$ = 4 μA (max) at Ta = 25°C Active state: $I_{CC} = 700 \mu A \text{ (max)}$ at $V_{CC} = 5 \text{ V}$ - High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min) - Output drive capability: 10 LSTTL loads - Symmetrical output impedance: |I_{OH}| = I_{OL} = 4 mA (min) - Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$ - Wide operating voltage range: V_{CC} (opr) = 2~6 V - Pin and function compatible with 74LS423 Note: In the case of using only one circuit, \overline{CLR} should be tied to GND, $Rx/Cx \cdot Cx \cdot Q \cdot \overline{Q}$ should be tied to OPEN, the other inputs should be tied to V_{CC} or GND. Weight DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) ### **Pin Assignment** ### **IEC Logic Symbol** # **Block Diagram (Note 1)(Note 2)** Note 1: Cx, Rx, Dx are external capacitor, resistor, and diode, respectively. #### Note 2: External clamping diode, Dx; The external capacitor is charged to V_{CC} level in the wait state, i.e. when no trigger is applied. If the supply voltage is turned off, Cx is discharges mainly through the internal (parasitic) diode. If Cx is sufficiently large and V_{CC} drops rapidly, there will be some possibility of damaging the IC through in rush current or latch-up. If the capacitance of the supply voltage filter is large enough and V_{CC} drops slowly, the in rush current is automatically limited and damage to the IC is avoided. The maximum value of forward current through the parasitic diode is ± 20 mA. In the case of a large Cx, the limit of fall time of the supply voltage is determined as follows: $$t_f \ge (V_{CC} - 0.7) Cx/20 mA$$ (tf is the time between the supply voltage turn off and the supply voltage reaching 0.4 V_{CC} .) In the event a system does not satisfy the above condition, an external clamping diode (Dx) is needed to protect the IC from in rush current. # **Truth Table** | | Inputs | | Out | puts | Note | |--------|----------|-----|-----|------|---------------| | Ā | В | CLR | Q | IQ | Note | | \Box | Н | Н | Л | | Output Enable | | Х | L | Η | L | Η | Inhibit | | Н | Х | Н | L | Н | Inhibit | | L | <u> </u> | Н | Л | | Output Enable | | Х | Х | L | L | Н | Reset | X: Don't care # **System Diagram** # **Timing Chart** # **Functional Description** #### (1) Stand-by state The external capacitor Cx is fully charged to V_{CC} in the stand-by state. That means, before triggering, the QP and QN transistors which are connected to the Rx/Cx node are in the off state. Two comparators that relate to the timing of the output pulse, and two reference voltage supplies turn off. The total supply current is only leakage current. #### (2) Trigger operation Trigger operation is effective in either of the following two cases. First, the condition where the \overline{A} input is low, and the B input has a rising signal; second, where the B input is high, and the \overline{A} input has a falling signal. After a trigger becomes effective, comparators C1 and C2 start operating, and QN is turned on. The external capacitor discharges through QN. The voltage level of the Rx/Cx node drops. If the Rx/Cx voltage level falls to the internal reference voltage V of C1 becomes low. The flip-flop is then reset and CN turns off. At that moment C1 stops but C2 continues operating. After QN turns off, the voltage at the Rx/Cx starts rising at a rate determined by the time constant of external capacitor Cx and resistor Rx. Upon the triggering, output Q becomes high, following some delay time of the internal F/F and gates. It stays high even if the voltage of Rx/Cx changes from falling to rising. When Rx/Cx reaches the internal reference voltage Vref H, the output of C2 becomes low, the output Q goes low and C2 stops its operation. That means, after triggering, when the voltage level of the Rx/Cx reaches Vref H, the IC returns to its MONOSTABLE state. With large values of Cx and Rx, and ignoring the discharge time of the capacitor and internal delays of the IC, the width of the output pulse, tw (OUT), is as follows: tw (OUT) = $1.0 \cdot Cx \cdot Rx$ #### (3) Retrigger operation When a new trigger is applied to input \overline{A} or B while in the MONOSTABLE state, it is effective only if the IC is charging Cx. The voltage level of the Rx/Cx node then falls to Vref L level again. Therefore the Q output stays high if the next trigger comes in before the time period set by Cx and Rx If the 2nd trigger is very close to previous trigger, such as an occurrence during the discharge cycle, it will have no effect. The minimum time for a trigger to be effective 2nd trigger, trr (min), depends on VCC and Cx. #### (4) Reset operation In normal operation, \overline{CLR} input is held high. If \overline{CLR} is low, a trigger has no effect because the Q output is held low and the trigger control F/F is reset. Also, QP turns on and Cx is charged rapidly to VCC. This means if $\overline{\text{CLR}}$ input is set low, the IC goes into a wait state. # **Absolute Maximum Ratings (Note 1)** | Characteristics | Symbol | Rating | Unit | |------------------------------------|------------------|------------------------------|------| | Supply voltage range | V_{CC} | -0.5~7 | V | | DC input voltage | V _{IN} | -0.5~V _{CC} + 0.5 | V | | DC output voltage | V _{OUT} | -0.5~V _{CC} + 0.5 | V | | Input diode current | I _{IK} | ±20 | mA | | Output diode current | lok | ±20 | mA | | DC output current | lout | ±25 | mA | | DC V _{CC} /ground current | Icc | ±50 | mA | | Power dissipation | PD | 500 (DIP) (Note 2)/180 (SOP) | mW | | Storage temperature | T _{stg} | −65~150 | °C | Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note 2: 500 mW in the range of $Ta = -40\sim65$ °C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW. # **Operating Ranges (Note 1)** | Characteristics | Symbol | Rating | Unit | |--------------------------------------|---------------------------------|--|------| | Supply voltage | V _{CC} | 2~6 | V | | Input voltage | V _{IN} | 0~V _{CC} | ٧ | | Output voltage | V _{OUT} | 0~V _{CC} | ٧ | | Operating temperature | T _{opr} | −40~85 | °C | | Input rise and fall time (CLR only) | t _r , t _f | 0~1000 (V _{CC} = 2.0 V)
0~500 (V _{CC} = 4.5 V)
0~400 (V _{CC} = 6.0 V) | ns | | External capacitor | Сх | No limitation (Note 2) | F | | External resistor | Rx | \geq 5 k (V _{CC} = 2.0 V) (Note 2)
\geq 1 k (V _{CC} \geq 3.0 V) (Note 2) | Ω | Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND. Note 2: The maximum allowable values of Cx and Rx are a function of leakage of capacitor Cx, the leakage of TC74HC423A, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for Rx > 1 M Ω . # **Electrical Characteristics** ### **DC Characteristics** | 01 1 1 | 0 1 1 | Test Condition | | | - | Ta = 25°C | | | Ta = -40~85°C | | |----------------------------------|-----------------|--|---------------------------|---------------------|------|-----------|------|------|---------------|------| | Characteristics | Symbol | | | V _{CC} (V) | Min | Тур. | Max | Min | Max | Unit | | | | | | 2.0 | 1.50 | _ | _ | 1.50 | _ | | | High-level input voltage | V_{IH} | | _ | 4.5 | 3.15 | _ | _ | 3.15 | _ | V | | | | | | 6.0 | 4.20 | _ | _ | 4.20 | _ | | | Lavortavatia avat | | | | 2.0 | _ | _ | 0.50 | _ | 0.50 | | | Low-level input voltage | V_{IL} | | _ | 4.5 | | _ | 1.35 | _ | 1.35 | V | | | | | | 6.0 | _ | _ | 1.80 | _ | 1.80 | | | | | | | 2.0 | 1.9 | 2.0 | _ | 1.9 | _ | | | High-level output | | V _{IN} | $I_{OH} = -20 \mu A$ | 4.5 | 4.4 | 4.5 | _ | 4.4 | _ | | | voltage
— | V _{OH} | = V _{IH} or
V _{IL} | | 6.0 | 5.9 | 6.0 | _ | 5.9 | _ | V | | (Q, Q) | | | $I_{OH} = -4 \text{ mA}$ | 4.5 | 4.18 | 4.31 | _ | 4.13 | _ | | | | | | I _{OH} = -5.2 mA | 6.0 | 5.68 | 5.80 | _ | 5.63 | _ | | | | | V _{IN} | I _{OL} = 20 μA | 2.0 | _ | 0.0 | 0.1 | _ | 0.1 | | | Low-level output | | | | 4.5 | _ | 0.0 | 0.1 | _ | 0.1 | | | voltage | V_{OL} | = V _{IH} or | | 6.0 | _ | 0.0 | 0.1 | _ | 0.1 | V | | (Q, Q) | | V _{IL} | I _{OL} = 4 mA | 4.5 | _ | 0.17 | 0.26 | _ | 0.33 | | | | | | I _{OL} = 5.2 mA | 6.0 | _ | 0.18 | 0.26 | _ | 0.33 | | | Input leakage current | I _{IN} | V _{IN} = V _C | _C or GND | 6.0 | _ | _ | ±0.1 | _ | ±1.0 | μА | | Rx/Cx terminal off-state current | I _{IN} | V _{IN} = V _C | _C or GND | 6.0 | _ | _ | ±0.1 | _ | ±1.0 | μА | | Quiescent supply current | I _{CC} | V _{IN} = V _{CC} or GND | | 6.0 | _ | _ | 4.0 | _ | 40.0 | μА | | Active-state supply | I _{CC} | ., ., | OND | 2.0 | _ | 45 | 200 | _ | 260 | μА | | current | | $V_{IN} = V_{CC}$ or GND
$Rx/Cx = 0.5 V_{CC}$ | | 4.5 | _ | 400 | 500 | _ | 650 | μА | | (Note) | | | | 6.0 | _ | 0.7 | 1.0 | _ | 1.3 | mA | Note: Per circuit # Timing Requirements (input: $t_r = t_f = 6$ ns) | Characteristics | Symbol | Test Condition | Test Condition | | | Ta =
-40
~85°C | Unit | |----------------------------|--------------------|------------------|---------------------|------|-------|----------------------|------| | | | | V _{CC} (V) | Тур. | Limit | Limit | | | | 4 | | 2.0 | _ | 75 | 95 | | | Minimum pulse width | t _{W (L)} | _ | 4.5 | _ | 15 | 19 | ns | | | t _{W (H)} | | 6.0 | _ | 13 | 16 | | | | | | 2.0 | _ | 75 | 95 | | | Minimum clear pulse width | t _{W (L)} | _ | 4.5 | _ | 15 | 19 | ns | | | | | 6.0 | _ | 13 | 16 | | | | t _{rem} | | 2.0 | _ | 5 | 5 | | | Minimum clear removal time | | _ | 4.5 | _ | 5 | 5 | ns | | | | | 6.0 | _ | 5 | 5 | | | | | Rx = 1 kΩ | 2.0 | 325 | _ | _ | | | | | | 4.5 | 108 | _ | _ | ns | | Minimum retrigger time | | Cx = 100 pF | 6.0 | 78 | _ | _ | | | winininan retrigger time | t _{rr} | Dv. 1kO | 2.0 | 5.0 | _ | _ | | | | | $Rx = 1 k\Omega$ | 4.5 | 1.4 | _ | _ | μS | | | | Cx = 0.01 μF | 6.0 | 1.2 | _ | _ | | # AC Characteristics ($C_L = 15 \text{ pF}$, $V_{CC} = 5 \text{ V}$, $Ta = 25 ^{\circ}\text{C}$, input: $t_r = t_f = 6 \text{ ns}$) | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |-------------------------------------|------------------|----------------|-----|------|-----|------| | Output transition time | t _{TLH} | | | 4 | 8 | ns | | Output transition time | t _{THL} | _ | _ | | | 113 | | Propagation delay time | t_{pLH} | | | 25 | 36 | 20 | | $(\overline{A}, B-Q, \overline{Q})$ | t_{pHL} | _ | _ | 23 | 30 | ns | | Propagation delay time | t _{pLH} | | | 16 | 27 | | | $(\overline{CL} - Q, \overline{Q})$ | t_{pHL} | _ | _ | 10 | 21 | ns | AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$) | | 0 | Test Condition | | | Ta = 25°C | | Ta = -4 | l lmi4 | | |--|--------------------|--|---------------------|-----|-----------|------|---------|--------|------| | Characteristics | Symbol | | V _{CC} (V) | Min | Тур. | Max | Min | Max | Unit | | | t | | 2.0 | _ | 30 | 75 | _ | 95 | | | Output transition time | t _{TLH} | _ | 4.5 | _ | 8 | 15 | _ | 19 | ns | | | t _{THL} | | 6.0 | | 7 | 13 | _ | 16 | | | Propagation delay | t _{pLH} | | 2.0 | | 102 | 210 | _ | 265 | | | time
 | • | _ | 4.5 | _ | 29 | 42 | _ | 53 | ns | | $(\overline{A}\;,B\text{-Q},\;\overline{Q}\;)$ | t_{pHL} | | 6.0 | _ | 22 | 36 | _ | 45 | | | Propagation delay | 4 | | 2.0 | _ | 68 | 160 | _ | 200 | | | time | t _{pLH} | _ | 4.5 | _ | 20 | 32 | _ | 40 | ns | | $(\overline{CL} - Q, \overline{Q})$ | t_{pHL} | | 6.0 | _ | 16 | 27 | _ | 34 | | | | | Cx = 28 pF | 2.0 | _ | 700 | 2000 | _ | 2500 | | | | | $Rx = 6 k\Omega (V_{CC} = 2 V)$ | 4.5 | _ | 250 | 400 | _ | 500 | ns | | | | $Rx = 2 k\Omega (V_{CC} = 4.5 V, 6 V)$ | 6.0 | _ | 210 | 340 | _ | 425 | | | | | $Cx = 0.01 \mu F$ $Rx = 10 k\Omega$ | 2.0 | 90 | 110 | 130 | 90 | 130 | | | Output pulse width | tw _{OUT} | | 4.5 | 95 | 105 | 115 | 95 | 115 | μS | | | | | 6.0 | 95 | 105 | 115 | 95 | 115 | | | | | Cv. 0.1E | 2.0 | 0.9 | 1.0 | 1.2 | 0.9 | 1.2 | | | | | $Cx = 0.1 \mu F$
$Rx = 10 k\Omega$ | 4.5 | 0.9 | 1.0 | 1.1 | 0.9 | 1.1 | ms | | | | KX = 10 K22 | 6.0 | 0.9 | 1.0 | 1.1 | 0.9 | 1.1 | | | Output pulse width error between circuits | ∆tw _{OUT} | _ | _ | _ | ±1 | _ | _ | _ | % | | (in same package) | | | | | | | | | | | Input capacitance | C _{IN} | | | _ | 5 | 10 | _ | 10 | pF | | Power dissipation | C_{PD} | _ | | | 162 | | | | pF | | capacitance | (Note) | _ | | | 102 | | | | ρι | Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. 8 Average operating current can be obtained by the equation: I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}' \cdot duty/100 + I_{CC}/2$ (per circuit) (I_{CC}': active supply current) (duty: %) 2007-10-01 Output Pulse Width Constant K – Supply Voltage (typical) tWOUT - Cx Characteristics (typ.) t_{rr} – V_{CC} Characteristics (typ.) 9 # **Package Dimensions** **TOSHIBA** Weight: 1.00 g (typ.) # **Package Dimensions** SOP16-P-300-1.27A Unit: mm Weight: 0.18 g (typ.) # **RESTRICTIONS ON PRODUCT USE** 20070701-EN GENERAL - The information contained herein is subject to change without notice. - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk. - The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. - Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.