TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

131,072-WORD BY 8-BIT CMOS STATIC RAM

DESCRIPTION

The TC558128BJ/BFT is a 1,048,576-bit high-speed static random access memory (SRAM) organized as 131,072 words by 8 bits. Fabricated using CMOS technology and advanced circuit techniques to provide high speed, it operates from a single 5 V power supply. There are two control inputs. Chip enable (\overline{CE}) can be used to place the device in a low-power mode, and output enable (\overline{OE}) provides fast memory access. This device is well suited to cache memory applications where high-speed access and high-speed storage are required. All inputs and outputs are directly TTL compatible. The TC558128BJ/BFT is available in a plastic 32-pin SOJ (400 mil width) and TSOP packages for high density surface assembly.

FEATURES

Fast access time (the following are maximum values) • Single power supply voltage of 5 V \pm 10%. TC558128BJ/BFT-12: 12 ns • Fully static operation

TC558128BJ/BFT-15: 15 ns

- Low-power dissipation
 - (the following are maximum values)

Cycle Time	12	15	20	25	30	ns
Operation (max)	1 9 0	170	140	130	120	mA

Standby: 1 mA (both devices)

PIN ASSIGNMENT

- All inputs and outputs are TTL compatible
- Output buffer control using \overline{OE}
- Package:

SOJ32-P-400-1.27A (BJ) (Weight: 1.22 g typ) TSOP II 32-P-400-0.80C (BFT) (Weight: 0.34 g typ)

PIN NAMES

A0 to A16	Address Inputs
I/01 to I/08	Data Inputs/Outputs
CE	Chip Enable
WE	Write Enable Input
ŌĒ	Output Enable
V _{DD}	Power (+ 5 V)
GND	Ground

961001EBA1

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice

BLOCK DIAGRAM

MAXIMUM RATINGS

RATING	VALUE	UNIT
Power Supply Voltage	– 0.5 to 7.0	V
Input Terminal Voltage	– 2.0 * to 7.0	v
Input/Output Terminal Voltage	- 0.5 * to V _{DD} + 0.5	V
Power Dissipation	1.1	W
Soldering Temperature (10 s)	260	°C
Storage Temperature	– 65 to 150	°C
Operating Temperature	– 10 to 85	°C
	Power Supply Voltage Input Terminal Voltage Input/Output Terminal Voltage Power Dissipation Soldering Temperature (10 s) Storage Temperature	Power Supply Voltage- 0.5 to 7.0Input Terminal Voltage- 2.0* to 7.0Input/Output Terminal Voltage- 0.5* to V _{DD} + 0.5Power Dissipation1.1Soldering Temperature (10 s)260Storage Temperature- 65 to 150

*: -3 V with a pulse width of 10 ns

<u>DC RECOMMENDED OPERATING CONDITIONS</u> (Ta = 0° to 70° C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	v
V _{IH}	Input High Voltage	2.2	-	V _{DD} + 0.5	v
V _{IL}	Input Low Voltage	- 0.5 *	-	0.8	v

*: -3 V with a pulse width of 10 ns

<u>DC CHARACTERISTICS</u> (Ta = 0° to 70° C, V_{DD} = 5 V ± 10%)

SYMBOL	PARAMETER	TEST CONDITION		MIN	ТҮР	МАХ	UNIT
I _{IL}	Input Leakage Current	$V_{IN} = 0 V$ to V_{DD}		_	-	± 10	μA
I _{LO}	Output Leakage Current	$\overline{CE} = V_{IH} \text{ or } \overline{WE} = V_{IL} \text{ or } \overline{CE}$ $V_{OUT} = 0 \text{ V to } V_{DD}$	OE = V _{IH}	-	-	± 10	μΑ
I _{ОН}	Output High Current	V _{OH} = 2.4 V		- 4	Ι	-	mA
I _{OL}	Output Low Current	V _{OL} = 0.4 V		8	Ι	-	mA
			tcycle = 12 ns	-	-	190	
		$\overline{CE} = V_{IL}$, lout = 0 mA	tcycle = 15 ns	-	-	170	
IDDO	Operating Current	$CE = V_{IL}$, $IOUT = 0 IIIA$	tcycle = 20 ns	-	-	140	mA
		Other Inputs = V_{IH} or V_{IL}	tcycle = 25 ns	-	-	130	
			tcycle = 30 ns	-	-	120	
I _{DDS1}		$\overline{CE} = V_{IH}$, Other Inputs = V_{IH} or V_{IL}		_	_	30	
I _{DDS2}	Standby Current	$\overline{CE} = V_{DD} - 0.2 V$ Other Inputs = $V_{DD} - 0.2$			_	1	mA

<u>CAPACITANCE</u> (Ta = 25°C, f = 1.0 MHz)

SYMBOL	PARAMETER	TEST CONDITION	МАХ	UNIT
C _{IN}	Input Capacitance	V _{IN} = GND	6	pF
C _{I/O}	Input/Output Capacitance	$V_{1/O} = GND$	8	pF

Note: This parameter is periodically sampled and is not 100% tested.

OPERATING MODE

MODE	CE	ŌĒ	WE	I/O1 to I/O8	POWER
Read	L	L	н	Output	I _{DDO}
Write	L	×	L	Input	I _{DDO}
Outputs Disable	L	Н	Н	High Impedance	I _{DDO}
Standby	н	×	×	High Impedance	I _{DDS}

 \times : Don't care

<u>AC CHARACTERISTICS</u> (Ta = 0° to $70^{\circ}C^{\text{(Note 1)}}$, $V_{DD} = 5 \text{ V} \pm 10\%$)

READ CYCLE

SYMBOL	PARAMETER	TC558128	BJ/BFT-12	TC558128	UNIT	
STIVIBOL	FANAIVIETEN	MIN	MAX	MIN	MAX	UNIT
t _{RC}	Read Cycle Time	12	-	15	_	
t _{ACC}	Address Access Time	-	12	-	15	
t _{CO}	Chip Enable Access Time	-	12	-	15	
t _{OE}	Output Enable Access Time	-	6	-	8	
t _{OH}	Output Data Hold Time from Address Change	5	-	5	-	ns
t _{COE}	Output Enable Time from Chip Enable	5	-	5	_	
t _{OEE}	Output Enable Time from Output Enable	1	-	1	-	
t _{COD}	Output Disable Time from Chip Enable	-	6	-	8	
t _{ODO}	Output Disable Time from Output Enable	-	6	-	8	

WRITE CYCLE

SYMBOL	PARAMETER		BJ/BFT-12	TC558128		
STIVIBOL	PARAIVIETER	MIN	МАХ	MIN	МАХ	UNIT
t _{WC}	Write Cycle Time	12	-	15	-	
t _{WP}	Write Pulse Width	8	-	9	-	
t _{CW}	Chip Enable to End of Write	10	-	12	-	
t _{AW}	Address Valid to End of Write	10	-	12	_	
t _{AS}	Address Setup Time	0	-	0	-	
t _{WR}	Write Recovery Time	0	-	0	-	ns
t _{DS}	Data Setup Time	6	-	8	-	
t _{DH}	Data Hold Time	0	_	0	_	
t _{OEW}	Output Enable Time from Write Enable	1	-	1	-	
t _{ODW}	Output Disable Time from Write Enable	_	6	_	8	

AC TEST CONDITIONS

Input Pulse Level	3.0 V, 0.0 V
Input Pulse Rise and Fall Time	3 ns
Input timing Measurement Reference Level	1.5 V
Output Timing Measurement Reference Level	1.5 V
Output Load	Fig. 1

TIMING DIAGRAMS

READ CYCLE (See Note 2)

WRITE CYCLE 1 (WE CONTROLLED) (See Note 5)

WRITE CYCLE 2 (CE CONTROLLED) (See Note 5)

- Note: (1) Operating temperature (Ta) is guaranteed for transverse air flow exceeding 400 linear feet per minute.
 - (2) $\overline{\text{WE}}$ remains HIGH for the Read Cycle.
 - (3) If \overline{CE} goes LOW coincident with or after \overline{WE} goes LOW, the outputs will remain at high impedance.
 - (4) If \overline{CE} goes HIGH coincident with or before \overline{WE} goes HIGH, the outputs will remain at high impedance.
 - (5) If \overline{OE} is HIGH during the write cycle, the outputs will remain at high impedance.
 - (6) The parameters specified below are measured using the load shown in Fig. 1.
 - (A) t_{COE}, t_{OEE}, t_{OEW} Output Enable Time
 - (B) t_{COD}, t_{ODO}, t_{ODW} Output Disable Time

PACKAGE DIMENSIONS

Plastic SOJ (SOJ32-P-400-1.27A)

Units in mm

Weight: 1.22 g (typ)

PACKAGE DIMENSIONS

Plastic TSOP (TSOP II 32-P-400-0.80C)

Units in mm

Weight: 0.34 g (typ)