TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8025F

PICK UP SENSOR INTERFACE IC

The TA8025F is an IC designed for making the output signal from electromagnetic pick up sensor and etc..., waveformshaping. The $V_{\mbox{th}}$ of input has hysteresis that is division value between peak voltage of input signal and 0V.

FEATURES

- Input frequency : DC~50kHz
- Input voltage V_{TH} : 0V⇔Vpeak×K
- Small package : SOP 8pin
- Separate GND line for output and logic control sections

BLOCK DIAGRAM AND PIN LAYOUT

Weight: 0.08g (Typ.)

961001EBA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

PIN DESCRIPTION

PIN No.	SYMBOL	DESCRIPTION
1	IN	Input pin for a signal from sensor.
2	REF	V_{TH} setting pin. The V_{TH} value can be set according to divide the input signal with resistors.
3	ст	This pin hold the peak value of input signal of REF pin.
4	GND	Grounded.
5	A.G	Grounded pin for REF.
6	OUT	The output is an NPN open-collector output and the input signal which is made waveform-shaping is gone out. When the output goes down, it has a slope of $1V/\mu s$ in order to lose the influence for the input signal.
7	N.C	Not connected.
8	Vcc	Power supply pin.

TIMING CHART

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	36	V
Input Voltage	VIN	36	V
Input Current	IIN	± 20	mA
Output Current	ΙΟυτ	10	mA
Power Dissipation	PD	280	mW
Operating Voltage	V _{opr}	4.5~30	V
Operating Temperature	T _{opr}	- 40~105	°C
Storage Temperature	T _{stg}	- 55~150	°C
Lead Temperature · Time	T _{sol}	260 (10s)	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \sim 16V$, $T_c = -40 \sim 105^{\circ}C$)

CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current	ICC	Vcc	-	Output : OFF	—	3.0	5.0	mA
Supply Current				Output : ON	—	4.5	8.0	
Input Current	IIN	IN	_	V _{IN} = 0V	- 0.2	—	0.1	μΑ
Input Current				$V_{IN} = V_{CC}$	– 0.1		0.1	
High-Side Minimum Threshold Voltage	V _{TH1}		_	V _{REF} = 0V	24	30	36	mA
Zero-Cross Threshold Voltage	V _{TH2}				- 20	_	20	
Zener Voltage	VZ		_	I _{IN} = 1mA	24	30	36	V
In much Cumment	IIN	REF	_	V _{IN} = 0V	- 0.2		0.1	μΑ
Input Current				V _{IN} = V _{CC}	- 0.1	—	0.1	
Output Voltage	V _{OL}		—	I _{OL} = 5mA	—	—	0.5	V
Output Leakage Current	1	OUT	_	V _{OH} = 5V	- 5.0	_	5.0	μA
Output Delay Time	Tdelay1	Tdelay1 Tdelay2 OUT	_	V _{CC} = 16V	—	7.5	20.0	μs
	Tdelay2		_	V _{DD} = 5V	_	5.0	10.0	

EXAMPLE OF APPLICATION CIRCUIT

Weight : 0.08g (Typ.)