

STV6415A

I²C bus-controlled video matrix switch

Features

- 20 MHz bandwidth
- Cascadable with another STV6415A (internal address can be changed by pin 7 voltage)
- Eight inputs (CVBS, RGB, Chroma, ...)
- Six outputs
- Possibility of chroma signal for each input by switching off the clamp with an external resistor bridge
- I²C bus-controlled
- 6.5 dB gain between any input and output
- -55 dB crosstalk at 5 MHz
- Full ESD protection

Description

The main function of the STV6415A is to switch eight video input sources on the six outputs.

Each output can be switched to only one of the inputs, whereas any single input may be connected to several outputs.

All switching possibilities are controlled through the I²C bus.

Order code	Packaging
STV6415AB	SO 20
31V0413AD	Plastic small outline package

STV6415A

1	Gene	ral description
2	Electr	rical characteristics
	2.1	Absolute maximum ratings 5
	2.2	Thermal data
	2.3	Electrical characteristics 5
	2.4	I ² C bus characteristics
	2.5	I ² C bus selections
		2.5.1 Second and following bytes (input/output selection)
	2.6	Input/output pin configurations
	2.7	Using a second STV6415A 9
	2.8	Application diagram 11
3	Packa	age mechanical data 12
	3.1	Environmental
4	Docu	ment revision history 14

1 General description

Figure 1. STV6415A Pin-out diagram

The main function of the STV6415A is to switch eight video input sources on the six outputs. Each output can be switched to only one of the inputs, whereas any single input may be connected to several outputs. The lowest level of each signal is aligned on each input (bottom of sync pulse for CVBS or Black Level for RGB signals).

The nominal gain between any input and output is 6.5 dB. For Chroma signals, the alignment is switched off by forcing, with an external 5 V_{DC} resistor bridge on the input. Each input can be used as a normal input or as a Chroma input (with external resistor bridge). All the switching possibilities are changed through the I²C bus.

Driving a 75 Ω load requires an external transistor.

The switch configuration is defined by words of 16 bits: the I²C address (8 bits) then one output configuration (8 bits). Therefore, six separated words of 16 bits are necessary to determine the starting configuration at power-on (power supply: 0 to 10 V).

A new configuration needs only the words (16 bits) of the changed output channels.

2 Electrical characteristics

2.1 Absolute maximum ratings

Table 1. Absolute maximum ratings	Table 1.	Absolute	maximum	ratings
-----------------------------------	----------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage (pin 9)	12	V
T _A	Operating ambient temperature range	0 to +70	°C
T _{STG}	Storage temperature range	–20 to +150	°C

2.2 Thermal data

Table 2.Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Junction-to-ambient thermal resistance SO20	100	°C/W

2.3 Electrical characteristics

(T_A = 25 $^{\circ}C$, V_{CC} = 10 V , R_{LOAD} = 10 k Ω , C_{LOAD} = 3 pF (unless otherwise specified)

Table 3. Electrical characteristics

Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage (pin 9)		8	10	11	V
I _{CC}	Power supply current (without load on outputs	s; V _{CC} = 10 V)	14	19	25	mA
Inputs						
-	Signal amplitude (CVBS signal)				2	V _{PP}
	Input current (input voltage = 5 V _{DC})			1	3	μA
	DC level		3.3	3.6	3.9	V
	DC level shift (temperature from 0 to 70°C)			5	100	mV
Outputs (V _{II}	$_{\rm N}$ = 1 V _{PP} for all dynamic tests) Pins 13,14, 15, $^{-1}$	16, 17 and 18				
	Dynamic		4.5	5.5		V _{PP}
	Output impedance			25	50	Ω
	Gain		6	6.5	7	dB
		IdB attenuation BdB attenuation	7	15 20		MHz
	Crosstalk	f = 3.58 MHz f = 5 MHz		60 55	-50 -45	dB

Table 5.	Table 5. Electrical characteristics (continued)				
Symbol	Parameter	Min.	Тур.	Max.	Unit
	DC Level	2.40	3.05	3.50	V
	Minimum output load (R _{LOAD})	2			kΩ

Table 3. Electrical characteristics (continued)

2.4 I²C bus characteristics

 $(T_A = 25 \ ^{\circ}C \ , \ V_{CC} = 10 \ V)$

Table 4. I²C bus characteristics

Symbol	Parameter	Test conditions	Min.	Max.	Unit		
PROG (pin 7)							
	Threshold voltage (typical value is 1.3)		1.00	1.65	V		
SCL (pin	4)	· · ·					
V _{IL}	Low level input voltage		-0.3	+1.0	V		
V _{IH}	High level input voltage		2.3	V _{CC} + 0.3	V		
Ι _{LI}	Input leakage current	$V_{I} = 0$ to V_{CC}	-10	+10	μA		
f _{SCL}	Clock frequency		0	100	kHz		
t _R	Input rise time	1.5 V to 3 V		1000	ns		
t _F	Input fall time	3 V to 1.5 V		300	ns		
CI	Input capacitance			10	pF		
SDA (pin	2)						
V _{IL}	Low level input voltage		-0.3	+1.0	V		
V _{IH}	High level input voltage		2.3	V _{CC} + 0.3	V		
I _{LI}	Input leakage current	$V_{I} = 0$ to V_{CC}	-10	+10	μA		
CI	Input capacitance			10	pF		
t _R	Input rise time	1.5 V to 3 V		1000	ns		
t _F	Input fall time	3 V to 1.5 V		300	ns		
V _{OL}	Low level output voltage	I _{OL} = 3mA		0.4	V		
t _F	Output fall time	3 V to 1.5 V		250	ns		
CL	Load capacitance			400	pF		
Timing							
t _{LOW}	Clock low period		4.7		μs		
t _{HIGH}	Clock high period		4.0		μs		
t _{SU} , _{DAT}	Data set-up time		250		ns		
t _{HD} , _{DAT}	Data hold time		0	340	ns		
t _{SU} , _{STO}	Set-up time from clock high to stop		4.0		μs		

TUDIC T.					
Symbol	Parameter	Test conditions	Min.	Max.	Unit
t _{BUF}	Start set-up time following a stop		4.7		μs
t _{HD, STA}	Start hold time		4.0		μs
t _{SU, STA}	Start set-up time following clock low-to-high transition		4.7		μs

Table 4. I²C bus characteristics (continued)

Figure 3. I²C bus timing

2.5 I²C bus selections

The I²C chip address is defined by the first byte. The second and following bytes define the input/output configurations.

Table 5.	First byte	(address)
----------	------------	-----------

0x86	0b1000 0110	When PROG pin is connected to Ground
0x06	0b0000 0110	When PROG pin is connected to V_{CC}

2.5.1 Second and following bytes (input/output selection)

Table 6.	I ² C bus output selections
----------	--

Output address (MSB)	Input address (LSB)	Selecte	d output
00000	XXX	Pin 18	
00100	XXX	Pin 14	
00010	XXX	Pin 16	
00110		Not used	Output is selected by
00001	XXX	Pin 17	the 5 MSBs.
00101	XXX	Pin 13	
00011	XXX	Pin 15	
00111		Not used	

Table 7. I²C bus input selections

Output address (MSB)	Input address (LSB)	Selecte	ed input
00XXX	000	Pin 5	
00XXX	100	Pin 8	
00XXX	010	Pin 3	
00XXX	110	Pin 20	Input is selected by
00XXX	001	Pin 6	the 3 LSBs.
00XXX	101	Pin 10	
00XXX	011	Pin 1	
00XXX	111	Pin 11	

Example: 00100 101 connects pin 10 (input) to pin 14 (output) (equals 25 in hexadecimal)

2.6 Input/output pin configurations

2.7 Using a second STV6415A

The programming input pin (PROG) allows two STV6415A circuits to operate in parallel, and to select them independently through the I²C bus by modifying the address byte. Consequently, the switching capabilities are doubled, or IC1 and IC2 can be cascaded.

Figure 8. Cascadable STV6415A configuration

2.8 Application diagram

Whenever an input is not used, it must be bypassed to ground through a 220 nF capacitor.

Note: The application diagram presented here is an example only and is subject to change without notice. The real application diagram will depend on application conditions and constraints.

57

3 Package mechanical data

Figure 10. 20-pin plastic SO (small outline) package, 300-mil width

Table 8. SO20 package

Dim	mm			inches		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.35		2.65	0.0926		0.1043
A1	0.10		0.30	0.0040		0.0118
В	0.33		0.51	0.0130		0.0200
С			0.32			0.0125
D	12.60		13.00	0.4961		0.5118
E	7.40		7.60	0.2914		0.2992
е		1.27			0.050	
Н	10.00		10.65	0.394		0.419
h	0.25		0.74	0.010		0.029
k	0°		8°	0°		8°
L	0.40		1.27	0.016		0.050
G			0.10			0.004
		Number of pins				
Ν	20					

3.1 Environmental

In order to meet environmental requirements, STMicroelectronics offers the STV6415A in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark.

ECOPACK specifications are available at www.st.com.

The ECOPACK version can be identified by the letter 'E' beside the ST logo. Both types are compatible with ROHS.

4 **Document revision history**

Table 9.Document revision history

Date	Revision	Changes	
28-Aug-2008	1	Initial Release	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

