

STSPIN233

Low voltage three phase and three sense motor driver

Datasheet - production data

Features

- Operating voltage from 1.8 to 10 V
- Maximum output current 1.3 Arms
- R_{DS(ON)} HS + LS = 0.4 Ω typ.
- Full protection set
 - Non-dissipative overcurrent protection
 - Short-circuit protection
 - Thermal shutdown
- Supporting three shunt sensing topology
- Direct driving, dedicated input and enable pin for each half-bridge
- Energy saving and long battery life with standby consumption less than 80 nA

Applications

- Battery-powered 3-phase brushless (BLDC) motors in applications such as
 - Drones and portable gimbals
 - Portable health care products
 - Low voltage electronic valves
 - Portable medical equipment
 - Toys
 - Robotics

Description

The STSPIN233 device integrates a triple halfbridge low $R_{DS(ON)}$ power stage in a small VFQFPN 3 x 3 x 1.0 mm package ideal for small and space constrained applications.

The device is designed to operate in batterypowered scenarios and can be forced in a zero consumption state, allowing a significant increase in battery life.

The STSPIN233 is supporting three shunt sensing topology.

The device offers a complete set of protection including overcurrent, overtemperature and short-circuit protection.

January 2018

DocID031111 Rev 1

This is information on a product in full production.

Contents

1	Block diagram	5			
2	Electrical data	6			
	2.1 Absolute maximum ratings	6			
	2.2 Recommended operating conditions	6			
	2.3 Thermal data	6			
	2.4 ESD protection ratings	7			
3	Electrical characteristics	8			
4	Pin description	0			
5	Typical applications	2			
6	Description	3			
	6.1 Standby and power-up 1	3			
	6.2 Motor driving 1	3			
	6.3 Overcurrent and short-circuit protections 1	3			
	6.4 Thermal shutdown 1	6			
7	Graphs	7			
8	Package information	9			
	8.1 VFQFPN 3 x 3 x 1.0 16L package information	9			
9	Ordering information	1			
10	Revision history				

List of tables

Table 1.	Absolute maximum ratings	6
Table 2.	Recommended operating conditions	6
Table 3.	Thermal data	6
Table 4.	ESD protection ratings	7
Table 5.	Electrical characteristics	8
Table 6.	Pin description	0
Table 7.	Typical application values	2
Table 8.	ENx and INx truth table	3
Table 9.	VFQFPN 3 x 3 x 1.0 16L package mechanical data	20
Table 10.	Device summary	21
Table 11.	Document revision history	21

List of figures

Figure 1.	Block diagram
Figure 2.	Pin connection (top view)
Figure 3.	Typical application schematic
Figure 4.	Overcurrent and short-circuit protections management
Figure 5.	Disable time versus R _{EN} and C _{EN} values (V _{DD} = 3.3 V)
Figure 6.	Disable time versus R _{EN} and C _{EN} values (V _{DD} = 1.8 V)
Figure 7.	Thermal shutdown management
Figure 8.	Power stage resistance versus supply voltage
Figure 9.	Power stage resistance versus temperature
Figure 10.	Overcurrent threshold versus supply voltage
Figure 11.	VFQFPN 3 x 3 x 1.0 16L package outline 19
Figure 12.	VFQFPN 3 x 3 x 1.0 16L recommended footprint

1 Block diagram

Figure 1. Block diagram

2 Electrical data

2.1 Absolute maximum ratings

Symbol	Parameter	Test condition	Value	Unit		
V _S	Supply voltage	-	-0.3 to 11	V		
V _{IN}	Logic input voltage	-	-0.3 to 5.5	V		
V _{OUT} - V _{SENSE}	Output to sense voltage drop	-	up to 12	V		
V _S - V _{OUT}	Supply to output voltage drop	-	up to 12	V		
V _{SENSE}	Sense pins voltage	-	-1 to 1	V		
I _{OUT,RMS}	Continuous power stage output current (each bridge)	-	1.3	Arms		
Tj	Junction temperature	-	-40 to 150	°C		
T _{STG}	Storage temperature	-	-55 to 150	°C		

Table 1. Absolute maximum ratings

2.2 Recommended operating conditions

Table 2. Recommended operating conditions

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _S	Supply voltage	-	1.8	-	10	V
V _{IN}	Logic input voltage	-	0	-	5	V

2.3 Thermal data

Table 3. Thermal data

Symbol	Parameter Conditions		Value	Unit
R _{thJA}	Junction to ambient thermal resistance	Natural convection, according to JESD51-2A ⁽¹⁾	57.1	°C/W
R _{thJCtop}	Junction to case thermal resistance (top side)	Simulation with cold plate on package top	67.3	°C/W
R _{thJCbot}	Junction to case thermal resistance (bottom side)	Simulation with cold plate on exposed pad	9.1	°C/W
R _{thJB}	Junction to board thermal resistance	according to JESD51-8 ⁽¹⁾	23.3	°C/W
Ψ_{JT}	Junction to top characterization	According to JESD51-2A ⁽¹⁾	3.3	°C/W
Ψ_{JB}	Junction to board characterization	According to JESD51-2A ⁽¹⁾	22.6	°C/W

1. Simulated on a 21.2 x 21.2 mm board, 2s2p 1 Oz copper and four 300 µm vias below the exposed pad.

2.4 ESD protection ratings

Symbol	Parameter	Conditions	Class	Value	Unit
НВМ	Human body model	Conforming to ANSI/ESDA/JEDEC JS-001-2014	2	2	kV
CDM	Charge device model	Conforming to ANSI/ESDA/JEDEC JS-001-2014		750	V

3 Electrical characteristics

Testing conditions: V_S = 5 V, T_j = 25 °C unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
Supply	I						
V _{Sth(ON)}	V _S turn-on voltage	V _S rising from 0 V	1.45	1.65	1.79	V	
V _{Sth(OFF)}	V _S turn-off voltage	V_S falling from 5 V	1.3	1.45	1.65	V	
V _{Sth(HYS)}	V _S hysteresis voltage	-	-	180	-	mV	
		No commutations EN = 0	-	900	1300	μA	
۱ _S	V _S supply current	No commutations EN = 1	-	1500	1950	μA	
I _{S,STBY}	V _S standby current	STBY = 0 V	-	10	80	nA	
V _{STBYL}	Standby low voltage	-	-	-	0.9	V	
V _{STBYH}	Standby high voltage	-	1.48	-	-	V	
Power stage							
		V _S = 10 V, I _{OUT} = 1.3 A	-	0.4	0.65		
R _{DS(ON)HS+LS}	Total on resistance HS + LS	$V_{\rm S}$ = 10 V, I _{OUT} = 1.3 A, T _j = 125 °C ⁽¹⁾	-	0.53	0.87	Ω	
		V _S = 3 V, I _{OUT} = 0.4 A	-	0.53	0.8		
	Leakage current	OUTx = V _S	-	-	1	μA	
I _{DSS}		OUTx = GND	- 1	-	-		
V_{DF}	Freewheeling diode forward voltage	I _D = 1.3 A	-	0.9	-	V	
t _{rise}	Rise time	V _S = 10 V; unloaded outputs	-	10	-	ns	
t _{fall}	Fall time	V _S = 10 V; unloaded outputs	-	10	-	ns	
t _{DT}	Integrated dead time		-	50	-	ns	
Logic IOs							
V _{IH}	High logic level input voltage	-	1.6	-	-	V	
V _{IL}	Low logic level input voltage	-	-	-	0.6	V	
V _{RELEASE}	FAULT open-drain release voltage	-	-	-	0.4	V	
V _{OL}	EN Low logic level output voltage	I _{EN} = 4 mA	-	-	0.4	V	
R _{STBY}	STBY pull-down resistance	-	-	36	-	kΩ	
I _{PDEN}	EN pull-down current	-	-	10.5	-	μA	
t _{End} EN input propagation delay		From EN falling edge to OUT high impedance	-	55	-	ns	
t _{IN,d(ON)}	Turn-on propagation delay	From INx rising edge to 10% of OUTx	-	125	-	ns	
t _{IN,d(OFF)}	Turn-off propagation delay	From INx falling edge to 90% of OUTx	-	140	-	ns	
				1	<u>i</u>		

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Protections						
T _{jSD}	Thermal shutdown threshold	-	-	160	-	°C
T _{jSD,Hyst}	Thermal shutdown hysteresis	-	-	40	-	°C
I _{OC}	Overcurrent threshold	See Figure 10 on page 18	-	2	-	А

Table 5. Electrical characteristics (continued)

1. Based on characterization data on a limited number of samples, not tested during production.

4 Pin description

Note: The exposed pad must be connected to ground.

Table 6. Pin description					
No.	Name	Туре	Function		
1	INU	Logic input	Output U driving input		
2	ENU	Logic input	Output U enable input		
3	OUTU	Power output	Power bridge output U		
4	SENSEU	Power output	Sense output bridge U		
5	VS	Supply	Device supply voltage		
6 EPAD	GND	Ground	Device ground		
7	OUTV	Power output	Power bridge output V		
8	SENSEV	Power output	Sense output bridge V		
9	SENSEW	Power output	Sense output bridge W		
10	OUTW	Power output	Power bridge output W		
11	INW	Logic input	Output W driving input		
12	ENW	Logic input	Output W enable input		

Table 6. Pin description

No.	Name	Туре	Function		
13	EN\FAULT	Logic input\ open-drain output	Logic input 5 V compliant whit and open-drain output. This is the enable of the power stage (when low, the power stage is turned off) and it is forced low through the integrated open-drain MOSFET when a failure occurs.		
14	STBY\RESET	Logic input	Logic input 5 V compliant. When forced low, the device is forced in low consumption mode.		
15	INV	Logic input	Output V driving input		
16	ENV	Logic input	Output V enable input		

Table 6. Pin description (continued)

5 Typical applications

Table 7. Typical application values		
Name	Value	
C _S	2.2 μF / 16 V	
C _{SPOL}	22 µF / 16 V	
R _{SNSU} , R _{SNSV} , R _{SNSW}	330 mΩ / 1 W	
C _{EN}	10 nF / 6.3 V	
R _{EN}	18 kΩ	
C _{STBY}	1 nF / 6.3 V	
R _{STBY}	18 kΩ	

6 Description

The STSPIN233 device is a protected triple half-bridge motor driver.

6.1 Standby and power-up

The device provides a low consumption mode which is set forcing the STBY\RESET input below the V_{STBYL} threshold.

When the device is in the standby status the power stage is disabled (outputs are in high impedance) and the supply to the integrated control circuitry is cut off. When the device leaves the standby status, all the control circuitry is reset at power-up condition.

6.2 Motor driving

The outputs of the three half-bridges are directly driven through the logic input as listed in *Table 8*.

EN\FAULT	ENx	INx	OUTx	'x' half-bridge condition
0	Х	х	HiZ	Disabled
1	0	х	HiZ	Disabled
1	1	0	GND	Low side MOSFET ON
1	1	1	VS	High side MOSFET ON

Table 8. ENx and INx truth table

6.3 **Overcurrent and short-circuit protections**

The device embeds a circuitry protecting each power output against the overload and shortcircuit conditions (short-circuit to ground, short-circuit to VS and short-circuit between outputs).

When the overcurrent or the short-circuit protection is triggered, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET discharging the external C_{EN} capacitor (refer to *Figure 4*).

The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below the V_{RELEASE} threshold, then the C_{EN} capacitor is charged through the R_{EN} resistor.

Figure 4. Overcurrent and short-circuit protections management

The total disable time after an overcurrent event can be set sizing properly the external network connected to the EN\FAULT pin (refer to *Figure 4*).

Equation 1

$t_{DIS} = t_{discharge} + t_{charge}$

But t_{charge} is normally very higher than $t_{\text{discharge}},$ we can consider only the second one contribution:

Equation 2

$$t_{\text{DIS}} \cong R_{\text{EN}} \cdot C_{\text{EN}} \cdot \ln \frac{(V_{\text{DD}} - R_{\text{EN}} \cdot I_{\text{PD}}) - V_{\text{RELEASE}}}{(V_{\text{DD}} - R_{\text{EN}} \cdot I_{\text{PD}}) - V_{\text{IH}}}$$

Where V_{DD} is the pull-up voltage of the R_{EN} resistor.

Figure 6. Disable time versus R_{EN} and C_{EN} values (V_{DD} = 1.8 V)

6.4 Thermal shutdown

The device embeds circuitry protecting it from the overtemperature condition.

When the thermal shutdown temperature is reached, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET (refer to *Figure 7*).

The protection and the EN\FAULT output are released when the IC temperature returns below a safe operating value (T_{jSD} - $T_{jSD,Hyst}$).

Figure 7. Thermal shutdown management

7 Graphs

Figure 9. Power stage resistance versus temperature

Figure 10. Overcurrent threshold versus supply voltage

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 VFQFPN 3 x 3 x 1.0 16L package information

Figure 11. VFQFPN 3 x 3 x 1.0 16L package outline

Symbol	Dimensions (mm)			Notos	
Symbol	Min.	Тур.	Max.	Notes	
А	0.80	0.90	1.00	-	
A1	0.00	0.02	0.005	(2)	
A3	-	0.20 REF.	-	-	
b	0.20	0.25	0.30	(3)	
D	3.00 BSC		-		
D1		1.50 BSC		-	
D2	1.70 1.80 1.90		-		
е	0.50 BSC		-		
E	3.00 BSC		-		
E1	1.50 BSC		-		
E2	1.70	1.80	1.90	-	
L	0.30	0.40	0.50	(3)	
ddd	0.05		-		

 VFQFPN stands for thermally enhanced "Very thin Fine pitch Quad Packages No lead". Very thin: 0.80 < A ≤ 1.00 mm / fine pitch: e < 1.00 mm. The topside terminal A1 indicator may be a molded or metalized feature. The optional indicator on the bottom surface may be a molded, marked or metalized feature.

2. A1 is defined as the distance from the seating plane to the lowest point on the package body (standoff).

3. Dimensions "b" and "L" are measured at terminal plating surface.

Figure 12. VFQFPN 3 x 3 x 1.0 16L recommended footprint

9 Ordering information

Order code	Package	Packaging
STSPIN233	VFQFPN 3 x 3 x 1.0 16L	Tape and reel

10 Revision history

Table 11. Document revision histor	v
------------------------------------	---

Date	Revision	Changes
17-Jan-2018	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

