

GENERAL DESCRIPTION

This advanced high voltage MOSFET is designed to withstand high energy in the avalanche mode and switch efficiently. This new high energy device also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, converters, power motor controls and bridge circuits.

FEATURES

- ♦ Higher Current Rating
- ◆ Lower Rds(on)
- ◆ Lower Capacitances
- Lower Total Gate Charge
- Tighter VSD Specifications
- ♦ Avalanche Energy Specified

PIN CONFIGURATION

SYMBOL

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS

Rating		Value	Unit
Drain to Current — Continuous		3.0	Α
- Pulsed	I _{DM}	12	
Gate-to-Source Voltage — Continue		±30	V
Non-repetitive	V_{GSM}	±40	V
Total Power Dissipation	P _D	35	W
Derate above 25℃		0.28	W/°C
Operating and Storage Temperature Range		-65 to 150	$^{\circ}$
Single Pulse Drain-to-Source Avalanche Energy $-T_{J} = 25^\circ\!\!\!\!\mathrm{C}$		176	mJ
$(V_{DD} = 50V, V_{GS} = 10V, I_D = 3A, L = 10mH, R_G = 25\Omega)$			
Thermal Resistance — Junction to Case	θ_{JC}	1.70	°C/W
 Junction to Ambient 	θ_{JA}	62	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	300	$^{\circ}\!\mathbb{C}$

ORDERING INFORMATION

Part Number	Package	
STP3NB80	TO-220 Full Package	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25 \, ^{\circ}\text{C}$.

			STP3NB80			
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		V _{(BR)DSS}	800			V
$(V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A})$		V (BR)BGG				
Drain-Source Leakage Current		loss				μA
$(V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V})$					1	
Gate-body Leakage Current		Igss			±100	nA
$(V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate-Source Leakage Current-Reverse		Igssr			-100	nA
$(V_{gsr} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate Threshold Voltage		V _{GS(th)}	3.0		5.0	V
(V _{DS} = V _{GS} , I _D = 250 μA)		. ,				
Static Drain-Source On-Resistance (Vgs = 10 V, ID = 1.5A) *	R _{DS(on)}		2.5	4.0	mhos
Forward Transconductance (VDS = ID(ON) x RDS(ON)max , ID = 1.5 A) *		Q FS	1.5			S
Input Capacitance		Ciss		445	580	pF
Output Capacitance	(V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz)	Coss		60	80	pF
Reverse Transfer Capacitance		Crss		7	9	pF
Turn-On Delay Time	$(V_{DD} = 400 \text{ V}, I_{D} = 1.5 \text{ A},$ $V_{GS} = 10 \text{ V},$ $R_{G} = 4.7\Omega) *$	td(on)		12	17	ns
Rise Time		tr		10	14	ns
Turn-Off Delay Time		td(off)		19	40	ns
Fall Time		t _f		10	20	ns
Total Gate Charge	(V _{DS} = 640 V, I _D = 3.0 A, V _{GS} = 10 V)*	Qg		17	24	nC
Gate-Source Charge		Qgs		6.5		nC
Gate-Drain Charge		Qgd		7.5		nC
Internal Drain Inductance		LD		4.5		nH
(Measured from the drain lead 0.25	" from package to center of die)					
nternal Drain Inductance		Ls		7.5		nH
(Measured from the source lead 0.2	25" from package to source bond pad)					
SOURCE-DRAIN DIODE CHARACT	ERISTICS					
Forward On-Voltage(1)	(Isp = 3.0 A,	VsD			1.6	V
Forward Turn-On Time		ton		**		ns
Reverse Recovery Time	dιs/dt = 100A/μs)	trr		650		ns

^{*} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%

^{**} Negligible, Dominated by circuit inductance

Safe Operating Area for TO-220FP

Output Characteristics

Transconductance

Thermal Impedance for TO-220FP

Transfer Characteristics

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Capacitance Variations

Normalized On Resistance vs Temperature

