

STL135N8F7AG

Automotive-grade N-channel 80 V, 3.15 mΩ typ., 130 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

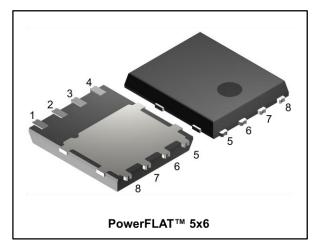
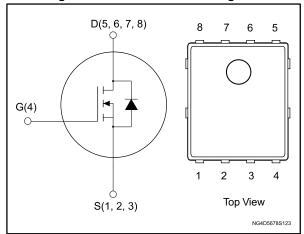



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max.		I _D	Ртот
STL135N8F7AG	80 V	3.6 mΩ	130 A	135 W

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness
- Wettable flank package

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL135N8F7AG	135N8F7	PowerFLAT™ 5x6	Tape and reel

Contents STL135N8F7AG

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 WF type C package information	9
	4.2	PowerFLAT™ 5x6 WF packing information	11
5	Revisio	n history	13

STL135N8F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	80	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	130	۸
ייטו	Drain current (continuous) at T _{case} = 100 °C	93	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	560	Α
I _D (3)	Drain current (continuous) at T _{pcb} = 25 °C	26	А
ID(°)	Drain current (continuous) at T _{pcb} = 100 °C	19	A
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	104	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _{case} = 25 °C	135	W
P _{TOT} (3)	Total dissipation at T _{pcb} = 25 °C	4.8	W
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	1.2	J
T _{stg}	Storage temperature range	FF to 175	°C
T _j Operating junction temperature range		-55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter Value		Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W
R _{thj-case}	Thermal resistance junction-case	1.1 °C/	

Notes:

 $^{^{(1)}}$ This value is rated according to $R_{\text{thj-c}}.$

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ This value is rated according to $R_{\text{thj-pcb}}$

 $^{^{(4)}}$ Starting T_j = 25 °C, I_D = 13 A, V_{DD} = 50 V

⁽¹⁾ When mounted on a 1-inch² FR-4 board, 2oz Cu, t < 10 s

Electrical characteristics STL135N8F7AG

2 Electrical characteristics

4/14

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	80			V	
	Zaro goto voltogo droin	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$			1		
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V},$ $T_j = 125 \text{ °C}$			10	μΑ	
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = 20 V			100	nΑ	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V	
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 13 A		3.15	3.6	mΩ	

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	6800	-	
Coss	Output capacitance	$V_{DS} = 40 \text{ V}, f = 1 \text{ MHz},$	-	1350	-	pF
C _{rss}	Reverse transfer capacitance	Ves = 0 V	-	95	1	'
Qg	Total gate charge	$V_{DD} = 40 \text{ V}, I_D = 26 \text{ A},$	-	103	-	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	35	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	28	1	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 40 \text{ V}, I_D = 13 \text{ A R}_G = 4.7 \Omega,$	-	30	-	
tr	Rise time	V _{GS} = 10 V (see Figure 13: "Test	-	28	-	
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 18: "Switching	-	73	-	ns
t _f	Fall time	time waveform")	-	30	-	

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isp	Source-drain current		-		26	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		104	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 26 A	-		1.2	V
t _{rr}	Reverse recovery time	$I_{SD} = 26 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	47		ns
Qrr	Reverse recovery charge	V _{DD} = 64 V (see Figure 15: "Test circuit for inductive load	-	66		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	2.8		А

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

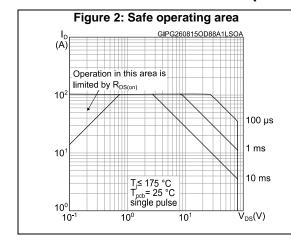


Figure 3: Thermal impedance K GIPG2608150D88A1LZTH δ =0.5 δ =0.2 δ =0.05 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.03 δ =0.04 δ =0.05 δ =0.02 δ =0.05 δ =0.02 δ =0.05 δ =0.05 δ =0.02 δ =0.05 δ =0.05 δ =0.02 δ =0.05 δ =0

Figure 4: Output characteristics

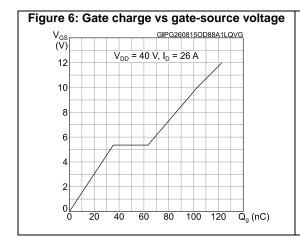
GIPG2608150D88A1LOCH

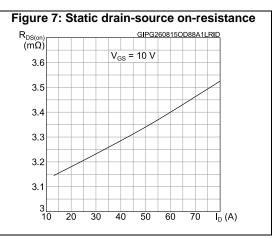
(A)

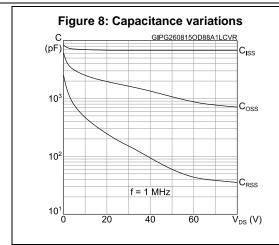
V_{GS} = 8,9,10 V

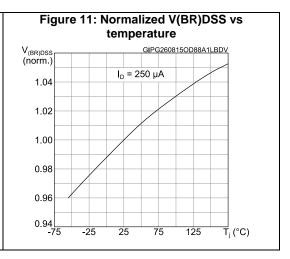
V_{GS} = 7 V

250


150


100


V_{GS} = 6 V


0

1 2 3 4 5 V_{DS} (V)

Test circuits STL135N8F7AG

3 Test circuits

Figure 13: Test circuit for resistive load switching times

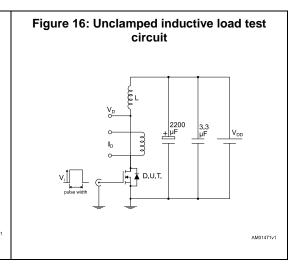
Figure 14: Test circuit for gate charge behavior

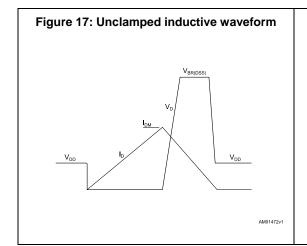
12 V 47 KΩ 100 Ω D.U.T.

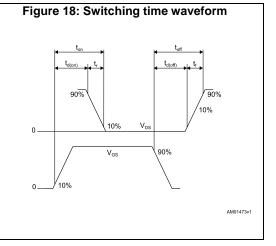
12 V 47 KΩ VGD

14 VGD

14 VGD


15 VGD


16 CONST 100 Ω D.U.T.


17 VGD

18 V

Figure 15: Test circuit for inductive load switching and diode recovery times

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

PowerFLAT™ 5x6 WF type C package information 4.1

BOTTOM VIEW D3 5 E7 Detail A E3 Scale 3:1 0.04 0.08 D5(x4) L(x4) b(x8) SIDE VIEW A Detail A TOP VIEW 8231817_WF_typeC_r12

Figure 19: PowerFLAT™ 5x6 WF type C package outline

577

Table 8: PowerFLAT™ 5x6 WF type C mechanical data

	able 8: PowerFLA1 *** 5x6	mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.0	5.20
D5	0.25	0.4	0.55
D6	0.15	0.3	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.2	0.325	0.450
E7	0.85	1.00	1.15
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

STL135N8F7AG Package information

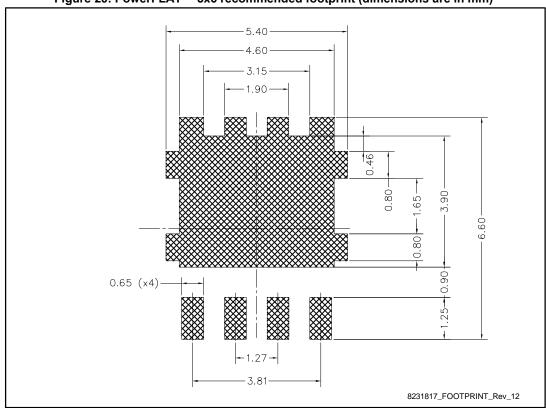


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 PowerFLAT™ 5x6 WF packing information

Figure 21: PowerFLAT™ 5x6 WF tape

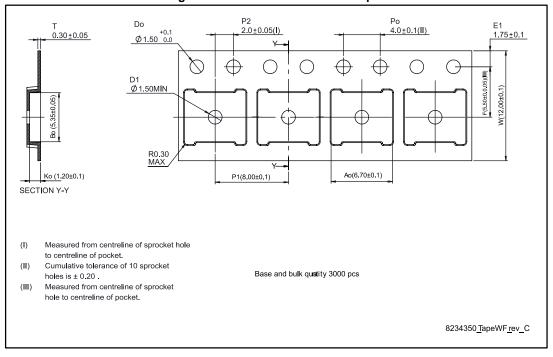


Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

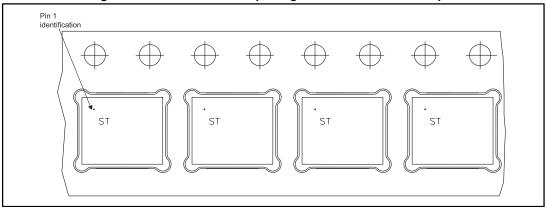
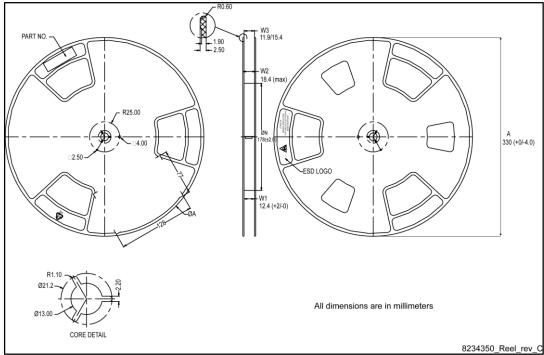



Figure 23: PowerFLAT™ 5x6 reel

STL135N8F7AG Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Sep-2015	1	First release.
15-Sep-2015	2	Minor text edits. On cover page: - updated Title and Features
26-Jan-2016	3	Updated Table 2: "Absolute maximum ratings" and Section 4.1: "PowerFLAT™ 5x6 WF type C package information".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

