www.ti.com

SCBS142U-MAY 1992-REVISED OCTOBER 2013

3.3-V ABT 16-Bit Buffers/Drivers With 3-State Outputs

Check for Samples: SN54LVTH16244A, SN74LVTH16244A

FEATURES

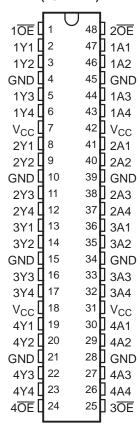
- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

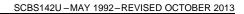
DESCRIPTION

The 'LVTH16244A devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) $V_{\rm CC}$ operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable ($\overline{\rm OE}$) inputs.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.


AA.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54LVTH16244A . . . WD PACKAGE SN74LVTH16244A . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

GQL OR ZQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
Δ	_	()	()		()	()	())
В		()	()	()	()	()	()	ı
С		()	()	()	()	()	()	ı
D		()	()	()	()	()	()	ı
Е		()	()			()	()	ı
F		()	()			()	()	ı
G		()	()	()	()	()	()	ı
н		()	()	()	()	()	()	ı
J		()	()	()	()	()	()	ı
K	L	()	()	()	()	()	()	J

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	2 OE
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
E	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
Н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
K	4 OE	NC	NC	NC	NC	3 OE

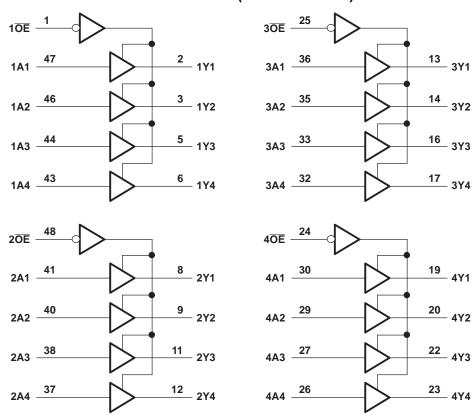
(1) NC - No internal connection

GRD OR ZRD PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6	_
Α		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	()	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	\							_

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	•				o ,	
	1	2	3	4	5	6
Α	1Y1	NC	1 OE	2 OE	NC	1A1
В	1Y3	1Y2	NC	NC	1A2	1A3
С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
E	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
Н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 OE	3 OE	NC	4A4


(1) NC - No internal connection

FUNCTION TABLE (EACH 4-BIT BUFFER)

INPL	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

www.ti.com

SCBS142U-MAY 1992-REVISED OCTOBER 2013

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the hi	gh-impedance or power-off state ⁽²⁾	-0.5	7	\ /	
Vo	Voltage range applied to any output in the hi	-0.5	V _{CC} + 0.5	V		
	Comment into any autout in the law state	SN54LVTH16244A		96	V	
I _O	Current into any output in the low state	SN74LVTH16244A		128	V	
	C	SN54LVTH16244A		48	V	
I _O	Current into any output in the high state (3)	SN74LVTH16244A		64		
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
		DGG package		70		
		DGV package		58		
θ_{JA}	Package thermal impedance (4)	DL package		63	°C/W	
		GQL/ZQL package		42		
			36			
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1)

			SN54LVTH	16244A	SN74LVTH	16244A	UNIT
			MIN	MAX	MIN	MAX	UNII
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-25		-32	mA
I _{OL}	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T_A	Operating free-air temperature		- 55	125	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

The current flows only when the output is in the high state and $V_O > V_{CC}$.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)(1)

PARA	AMETER	TEST CO	ONDITIONS	SN54L\	/TH162	44A		C to 85 VTH162		-40°	ommende C to 1250 VTH1624		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2			-1.2	V
		V _{CC} = 2.7 V to 3.6 V,	$I_{OL} = -100 \mu A$	V _{CC} - 0.2			V _{CC} - 0.2			V _{CC} - 0.2			
V_{OH}		V _{CC} = 2.7 V,	$I_{OH} = -8 \text{ mA}$	2.4					2.4			2.4	V
		V _{CC} = 3 V	I _{OH} = -24 mA	2									
		V _{CC} = 3 V	$I_{OH} = -32 \text{ mA}$						2			2	
		V _{CC} = 2.7 V	I _{OL} = 100 μA			0.2			0.2			0.2	MAX -1.2 V 2.4 V 2 0.2 0.5 0.4 V 0.55 10 μA -5 μA -1 μA -5 μA -1 μA -
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5			0.5	
1/			I _{OL} = 16 mA			0.4			0.4			0.4	\/
V_{OL}		V _{CC} = 3 V	I _{OL} = 32 mA			0.5			0.5				
		V _{CC} = 3 V	I _{OL} = 48 mA			0.55							
			I _{OL} = 64 mA						0.55			0.55	
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	$V_1 = 5.5 \text{ V}$			50			10			10	
l ₁	Control inputs $V_{CC} = 3.6 \text{ V},$		$V_{I} = V_{CC}$ or GND			±1	±1			±1			μA
	Data	V _{CC} = 3.6 V	$V_I = V_{CC}$			1			1			1	•
	inputs	V _{CC} = 3.6 V	$V_I = 0$			- 5			- 5			– 5	
$I_{\rm off}$		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V				±100			±100			μΑ
		V 2.V	V _I = 0.8 V	75					75			75	
I _{I(hold)}	Data	$V_{CC} = 3 V$	V _I = 2 V	-75					-75			-75	υА
·I(noid)	inputs	$V_{CC} = 3.6 V^{(2)},$							500 -750				μ
I _{OZH}		V _{CC} = 3.6 V,	V _O = 3 V			5			5			5	μA
I _{OZL}		V _{CC} = 3.6 V,	$V_0 = 0.5 \text{ V}$			- 5			- 5			– 5	μΑ
I _{OZPU}		$\frac{V_{CC}}{OE} = 0 \text{ to } 1.5 \text{ V}, V_{C}$ $\frac{V_{CC}}{OE} = \text{don't care}$	$_{0}$ = 0.5 V to 3 V,			±100 ⁽	±100			±100			μA
I _{OZPD}		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V_{CC}	_O = 0.5 V to 3 V,			±100(3)	±100			±100			μA
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19			0.19	
I_{CC}		$I_0 = 0$,	Outputs low			5			5			5	mA
		$V_I = V_{CC}$ or GND	Outputs disabled			0.19			0.19			0.19	
ΔI _{CC} ⁽⁴⁾	$V_{CC} = 3 \text{ V to } 3.6 \text{ V,}$ V_{C		One input at V _{CC} – 0.6 or GND			0.2			0.2			0.2	mA
Ci		V _I = 3 V or 0 V			4			4			4		pF
C _o		V _O = 3 V or 0 V			9			9			9		pF

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

On products compliant to MIL-PRF-38535, this parameter does not apply.

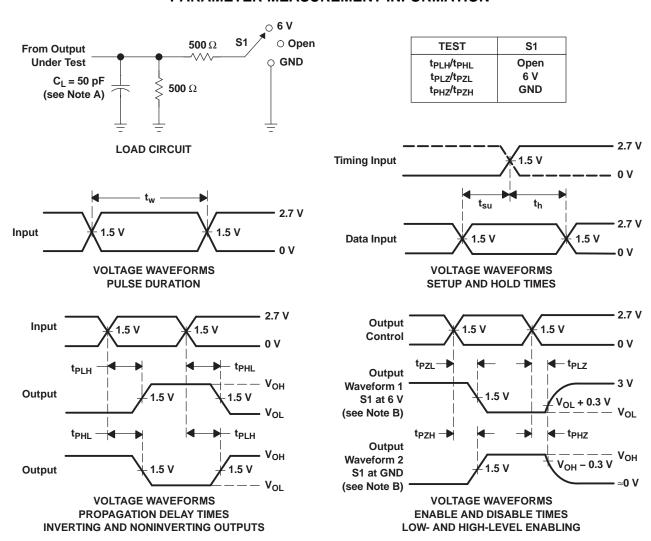
This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

www.ti.com

SCBS142U-MAY 1992-REVISED OCTOBER 2013

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)⁽¹⁾


	FROM	то	SN54LVTH16244A				-40°C to 85°C SN74LVTH16244A					-40	commer 0°C to 1 ILVTH1	25C																																	
PARAMETER	(INPUT)	(OUTPUT)		: 3.3 V .3 V	V _{CC} =	2.7 V		cc = 3.3 ± 0.3 \		V _{CC} =	2.7 V		_{CC} = 3.3 ± 0.3 \		V _{CC} =	2.7 V	UNIT																														
			MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX																															
t _{PLH}	^	Υ	1.1	4.4		4.6	1.2	2.3	3.2		3.7	1.2	2.3	4.4		4.6																															
t _{PHL}	Α	Α	ĭ	1.1	3.6		3.9	1.2	2	3.2		3.7	1.2	2	3.6		3.9	ns																													
t _{PZH}	<u> </u>	V	1.1	4.6		5.4	1.2	2.6	4		5	1.2	2.6	4.6		5.4																															
t _{PZL}	OE	OE	OE	OE	OE	OE	OE	OE	OE	OE 	OE 	OE	ŌĒ	ŌĒ Y	1.1	5.4		6.2	1.2	2.7	4		5	1.2	2.7	5.4		6.2	ns																		
t _{PHZ}	<u> </u>	V	1.6	5.7		6.2	2.2	3.3	4.5		5	2.2	3.3	5.7		6.2																															
t_{PLZ}	OĒ	ŌĒ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	1.2	5		4.7	2	3.1	4.2		4.4	2	3.1	5		4.7	ns
t _{sk(LH)}									0.5					0.5			no																														
t _{sk(HL)}									0.5					0.5			ns																														

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com

SCBS142U -MAY 1992-REVISED OCTOBER 2013

REVISION HISTORY

CI	hanges from Revision T (November 2006) to Revision U	Page
•	Updated document to new TI data sheet format - no specification changes	1
•	Removed ordering information.	1
•	Updated operating temperature range.	5

Submit Documentation Feedback

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)			_	Qty	(2)	(6)	(3)		(4/5)	
5962-9668501QXA	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9668501QX A SNJ54LVTH16244 AWD	Samples
5962-9668501VXA	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9668501VX A SNV54LVTH16244 AWD	Samples
74LVTH16244ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
74LVTH16244ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
74LVTH16244ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
SN74LVTH16244ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
SN74LVTH16244ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LL244A	Samples
SN74LVTH16244ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
SN74LVTH16244ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
SN74LVTH16244ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVTH16244A	Samples
SN74LVTH16244AGQLR	OBSOLETE	BGA MICROSTAR JUNIOR	GQL	56		TBD	Call TI	Call TI	-40 to 85		
SN74LVTH16244AGRDR	OBSOLETE	BGA MICROSTAR JUNIOR	GRD	54		TBD	Call TI	Call TI	-40 to 85		
SN74LVTH16244AZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LL244A	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVTH16244AZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LL244A	Samples
SNJ54LVTH16244AWD	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9668501QX A SNJ54LVTH16244 AWD	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

10-Jun-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

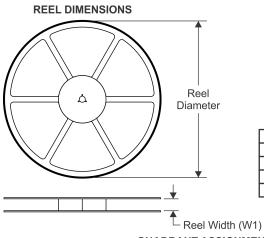
OTHER QUALIFIED VERSIONS OF SN54LVTH16244A, SN54LVTH16244A-SP, SN74LVTH16244A:

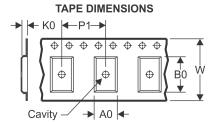
Catalog: SN74LVTH16244A, SN54LVTH16244A

• Enhanced Product: SN74LVTH16244A-EP, SN74LVTH16244A-EP

Military: SN54LVTH16244A

• Space: SN54LVTH16244A-SP

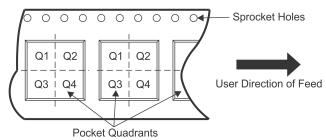

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

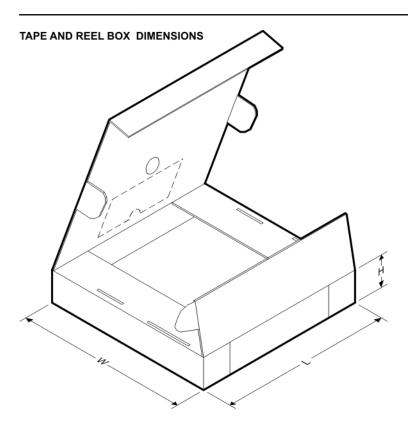
www.ti.com 11-Oct-2013

TAPE AND REEL INFORMATION



	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

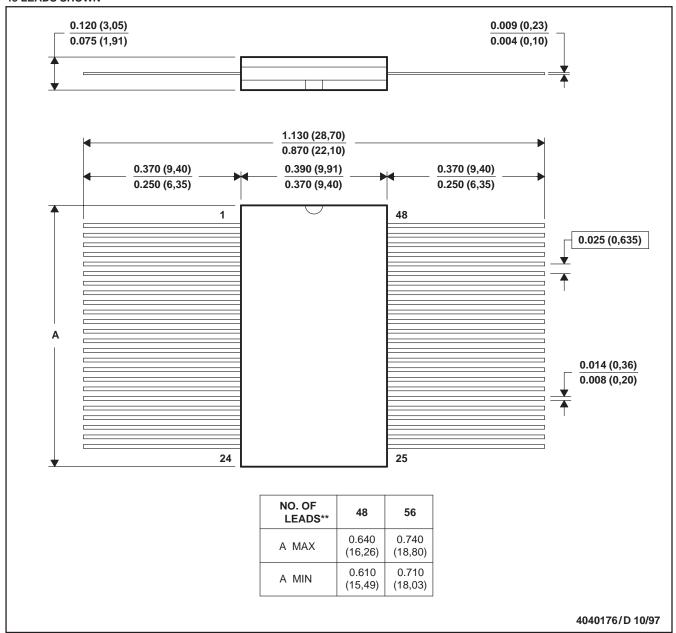
- Reel Width (W1)


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16244ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74LVTH16244ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVTH16244ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVTH16244AZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74LVTH16244AZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1

www.ti.com 11-Oct-2013

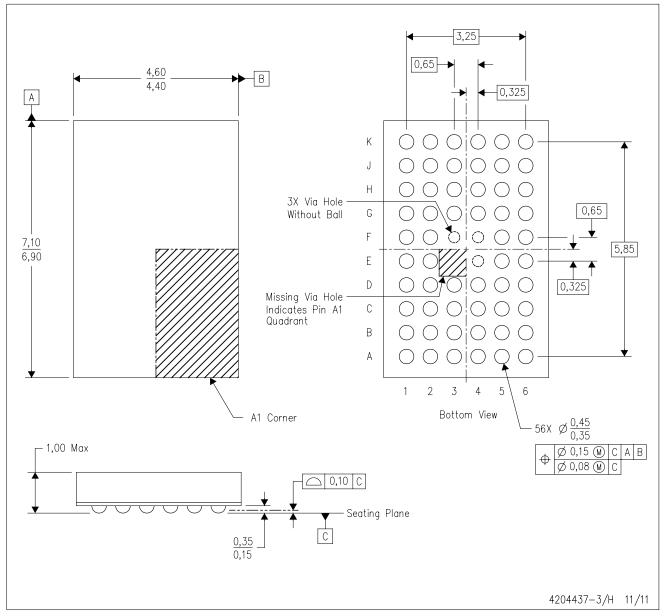

*All dimensions are nominal

All difficults are nominal										
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)			
SN74LVTH16244ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0			
SN74LVTH16244ADGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0			
SN74LVTH16244ADLR	SSOP	DL	48	1000	367.0	367.0	55.0			
SN74LVTH16244AZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6			
SN74LVTH16244AZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	336.6	336.6	28.6			

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK

48 LEADS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

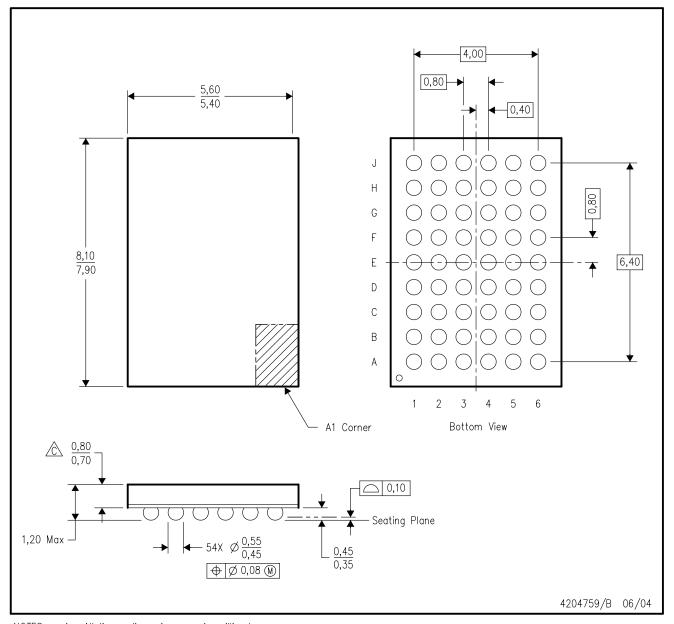
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

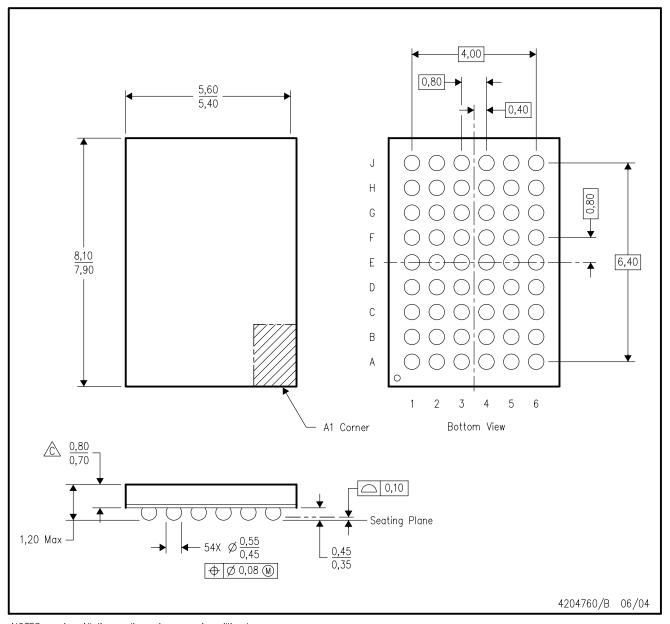
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MicroStar Junior is a trademark of Texas Instruments

GRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

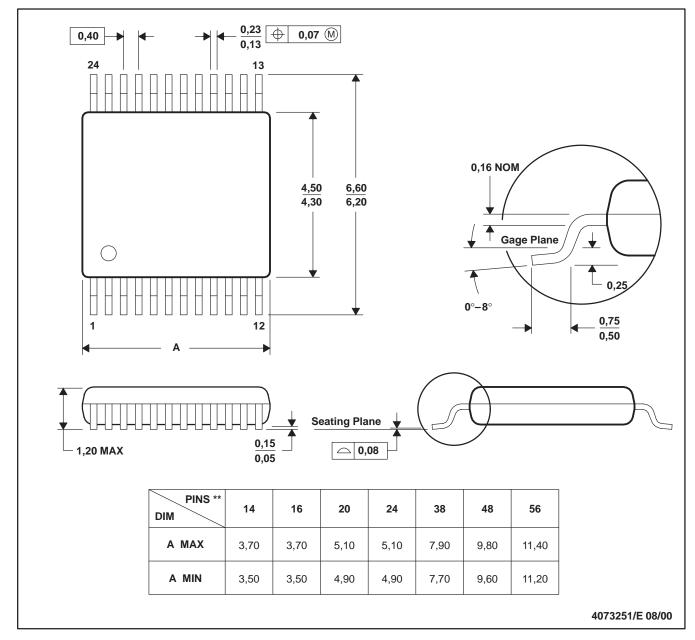

 $\hbox{NOTES:} \quad \hbox{A. All linear dimensions are in millimeters.}$

- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is tin-lead (SnPb). Refer to the 54 ZRD package (drawing 4204760) for lead-free.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

 $\hbox{NOTES:} \quad \hbox{A. All linear dimensions are in millimeters.}$

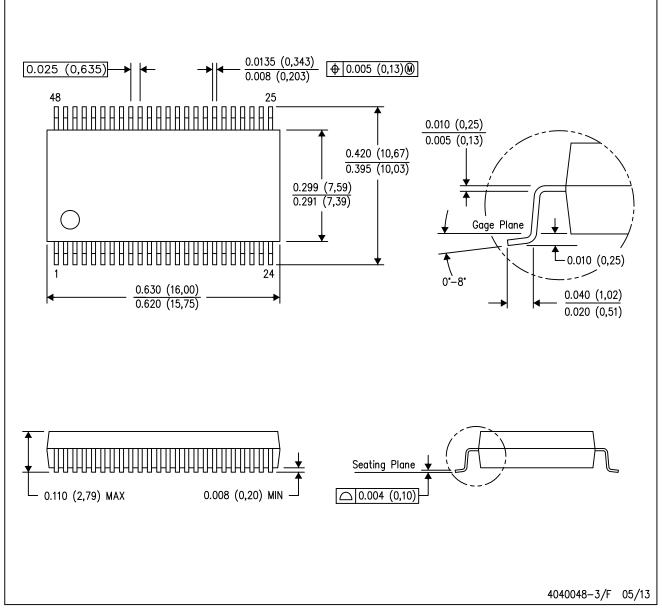

- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is lead—free. Refer to the 54 GRD package (drawing 4204759) for tin—lead (SnPb).

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

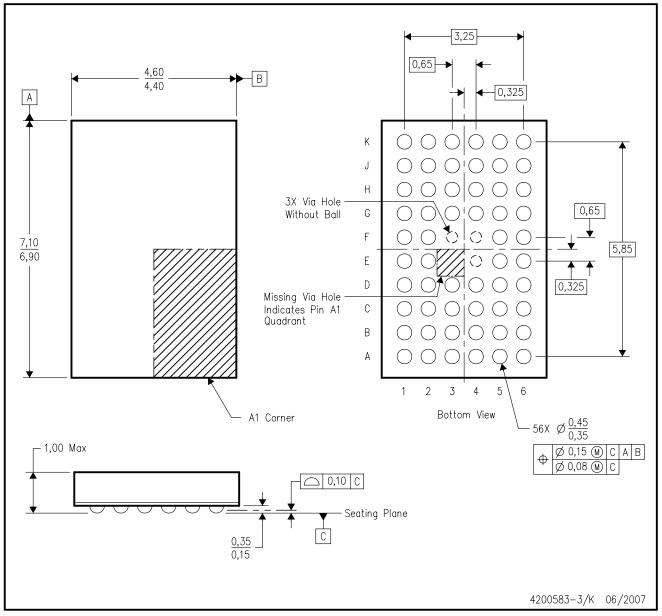
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

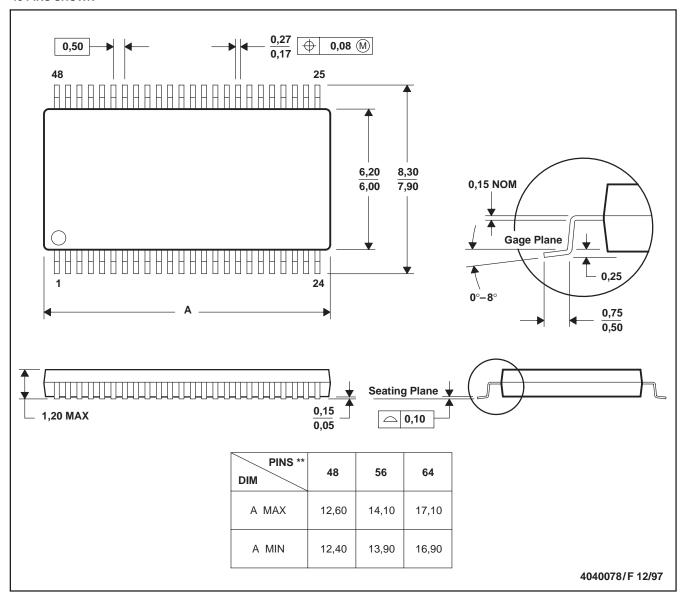

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>