

NC7SZ157 TinyLogic[®] UHS 2-Input Non-Inverting Multiplexer

Features

- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Ultra High-Speed
- Pow er Dow n High-Impedance Inputs/Outputs
- Over-Voltage Tolerance Inputs Facilitate 5V to 3V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak™ Packages
- Space-Saving SC70 Package

Description

The NC7SZ157 is a single, high performance, 2-to-1 CMOS non-inverting multiplexer from ON Semiconductor's Ultra-High Speed series of TinyLogic[®]. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static pow er dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 5.5V independent of V_{CC} operating range.

Ordering Information

Part Number	Top Mark	Eco Status	Package	Packing Method
NC7SZ157P6X	ZF7	RoHS	6-Lead SC70, EIAJ SC-88, 1.25mm Wide	3000 Units on Tape & Reel
NC7SZ157L6X	B9	RoHS	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel
NC7SZ157FHX	B9	Green	6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Pin # SC70	Pin # MicroPak	Name	Description
1	1	h	Data Input
2	2	GND	Ground
3	3	lo	Data Input
4	4	Z	Output
5	5	Vcc	Supply Voltage
6	6	S	Control Input

Function Table

Inputs		Output		
I ₁	lo	$Z = (I_0) \bullet (S) + (I_1) \bullet (S)$		
Х	L	L		
Х	Н	Н		
L	Х	L		
Н	Х	Н		
	Inputs I1 X L H			

H = HIGH Logic Level

L = LOW Logic Level

X = Don'ť Care

NC7SZ157 — TinyLogic[®] UHS 2-Input Non-Inverting Multiplexer

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	ameter	Min.	Max.	Unit
Vcc	Supply Voltage		-0.5	7.0	V
V _{IN}	DC Input Voltage		-0.5	7.0	V
Vout	DC Output Voltage	-0.5	7.0	V	
lıк	DC Input Diode Current	$V_{IN} \leq 0.5V$		-50	mA
Юк	DC Output Diode Current	$V_{OUT} \le -0.5V$		-50	mA
lout	DC Output Current		±50	mA	
Icc or Ignd	DC V _{CC} or Ground Current		±50	mA	
T _{STG}	Storage Temperature Range	-65	+150	°C	
TJ	Junction Temperature Under B	ias		+150	°C
TL	Junction Lead Temperature (Se	oldering, 10 Seconds)		+260	°C
		SC70-6		180	
PD	Pow er Dissipation at +85°C	MicroPak-6		130	mW
		MicroPak2-6		120	
FOD	Human Body Model, JEDEC: JE		4000	v	
ESD	Charge Device Model, JEDEC:	IESD22-C101		2000	v

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{CC}	Supply Voltage Operating		1.65	5.50	V
V CC	Supply Voltage Data Retention		1.50	5.50	v
V _{IN}	Input Voltage		0	5.5	V
Vout	Output Voltage		0	Vcc	V
TA	Operating Temperature		-40	+85	°C
		V _{CC} at 1.8V ± 0.15V, 2.5V ± 0.2V	0	20	
t _r , t _f	Input Rise and Fall Times	V _{CC} at 3.3V ± 0.3V	0	10	ns/V
		V _{CC} at 5.0V ± 0.5V	0	5	
		SC70-6		350	
θја	Thermal Resistance	MicroPak-6		500	°C/W
		MicroPak2-6		560	

Curren la a l	Denemator	V	O an all the ma		T _A =+25°C			T _A =-40 to +85°C			
Symbol	Parameter	V _{CC} Conditio		altions	Min.	Тур.	Max.	Min.	Max.	Units	
	HIGH Level Input	1.65 to 1.95			$0.75V_{\text{CC}}$			$0.75V_{\text{CC}}$		V	
V _{IH} Voltage		2.30 to 5.50			$0.70V_{\text{CC}}$			$0.70V_{\text{CC}}$		V	
V	LOW Level Input	1.65 to 1.95					$0.25V_{CC}$		$0.25V_{CC}$	V	
VIL	Voltage	2.30 to 5.50					$0.30V_{CC}$		$0.30V_{CC}$	v	
		1.65			1.55	1.65		1.55			
		2.30	V _{IN} =V _{IL}	I _{он} = -100µА	2.20	2.30		2.20			
V _{он} HIGH Lev Output Vo		3.00	or V _{IH}	10H= -100µA	2.90	3.00		2.90			
		4.50			4.40	4.50		4.40			
	HIGH Level Output Voltage	1.65	V _{IN} =V _{IL} or V _{IH}	I _{он} = -4mA	1.29	1.52		1.29		V	
		2.30		I _{он} = -8mA	1.90	2.15		1.90			
		3.00		I _{он} = -16mA	2.40	2.80		2.40			
		3.00		I _{он} = -24mA	2.30	3.68		2.30			
		4.50		I _{он} = -32mA	3.90	4.20		3.80			
		1.65	V _{IN} =V _{IL}	I _{ol} = 100μΑ		0	0.10		0.10	V	
		2.30				0	0.10		0.10		
		3.00	or V_{IH}			0	0.10		0.10		
		4.50				0	0.10		0.10		
V_{OL}	LOW Level Output Voltage	1.65		I _{OL} = 4mA		0.08	0.24		0.24		
	1 0	2.30	V _{IN} =V _{IL}	I _{OL} = 8mA		0.10	0.30		0.30		
		3.00	or V _{IH}	I _{OL} = 16mA		0.15	0.40		0.40	V	
		3.00		I _{OL} = 24mA		0.22	0.55		0.55		
		4.5		I _{OL} = 32mA		0.22	0.55		0.55		
I _{IN}	Input Leakage Current	0 to 5.50	V _{IN} =5.5V, GND				±0.1		±1	μA	
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} =5.5V				1		10	μA	
Icc	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5	/, GND					10	μA	

Sym bol	Parameter	V _{cc}	Conditions	T _A =+25°C		T _A =-40 to +85°C		L ha it a	Figure	
	Farameter			Min.	Тур.	Max.	Min.	Max.	Units	Figure
		1.80 ± 0.15		2.5	6.0	11.5	2.5	12.0		
	Propagation Delay S to Z	2.50 ± 0.20	oL=ropr,	1.2	3.5	6.1	1.2	6.5		
		3.30 ± 0.30		0.8	2.6	4.1	0.8	4.5		
	5.00 ± 0.50		0.5	1.9	3.2	0.5	3.5	1		
	Propagation Delay	1.80 ± 0.15	C∟=15pF, R∟=1MΩ,	2.5	5.9	10.0	2.5	10.5	ns	Figure 5 Figure 6
		5.00 ± 0.50		1.2	3.5	5.8	1.2	6.1		
t _{PLH} , t _{PHL}	I _n to Z	3.30 ± 0.30		0.8	2.6	3.9	0.8	4.2		
		5.00 ± 0.50		0.5	1.9	3.1	0.5	3.3		
	Propagation Delay	3.30 ± 0.30	C _L =50pF,	1.2	3.2	4.8	1.2	5.2		
	S to Z	5.00 ± 0.50	R∟=500Ω,	0.8	2.4	3.8	0.8	4.1		
	Propagation Delay	3.30 ± 0.30	C∟=50pF,	1.2	3.2	4.6	1.2	5.0		
	I _n to Z	5.00 ± 0.50	R _L =500Ω,	0.8	2.4	3.7	0.8	4.0		
CIN	Input Capacitance	0.00			2				pF	
C _{PD}	Power Dissipation	3.30			14				ъĒ	Figure
CPD	Capacitance ⁽⁴⁾	5.00			17				рF	Figure 7

Note:

4. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static).

5. C_L includes load and stray capacitance. Input PRR=1.0MHz, t_w=500ns.

Figure 6. AC Waveforms

Note:

6. Input=AC Waveform; PRR=Variable; Duty Cycle=50%.

Figure 7. I_{CCD} Test Circuit

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status	
	Leader (Start End)	125 (Typical)	Empty	Sealed	
P6X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (Typical)	Empty	Sealed	

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications by ustomer provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products for any such unintended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor foucts for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, s

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative