MMBT2369ALT1 is a Preferred Device # **Switching Transistors** ### **NPN Silicon** ### **Features** • Pb-Free Packages are Available ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------|------| | Collector - Emitter Voltage | V _{CEO} | 15 | Vdc | | Collector - Emitter Voltage | V _{CES} | 40 | Vdc | | Collector - Base Voltage | V _{CBO} | 40 | Vdc | | Emitter – Base Voltage | V _{EBO} | 4.5 | Vdc | | Collector Current – Continuous | I _C | 200 | mAdc | ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------------------------|-------------|-------------| | Total Device Dissipation FR-5 Board
(Note 1) T _A = 25°C
Derate above 25°C | P _D | 225
1.8 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 556 | °C/W | | Total Device Dissipation Alumina
Substrate, (Note 2) T _A = 25°C
Derate above 25°C | P _D | 300
2.4 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 417 | °C/W | | Junction and Storage Temperature | T _J , T _{stg} | -55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in. - 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina. ### ON Semiconductor® ### http://onsemi.com SOT-23 CASE 318 STYLE 6 ### **MARKING DIAGRAMS** xxx = M1J or 1JA M = Date Code* ■ = Pb–Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. ### **ORDERING INFORMATION** | Device | Package | Shipping | |---------------|---------------------|------------------| | MMBT2369LT1 | SOT-23 | 3000/Tape & Reel | | MMBT2369LT1G | SOT-23
(Pb-Free) | 3000/Tape & Reel | | MMBT2369ALT1 | SOT-23 | 3000/Tape & Reel | | MMBT2369ALT1G | SOT-23
(Pb-Free) | 3000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **Preferred** devices are recommended choices for future use and best overall value. ## $\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted)$ | Characteristic | Symbol | Min | Тур | Max | Unit | | |--|---|-----------------------|---------------------------------------|-----------------------|--------------------------------------|------| | OFF CHARACTERISTICS | I. | | L | | l | | | | | V _{(BR)CEO} | 15 | _ | _ | Vdc | | Collector – Emitter Breakdown Voltage ($I_C = 10 \mu Adc, V_{BE} = 0$) | | V _{(BR)CES} | 40 | _ | _ | Vdc | | Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) | | V _{(BR)CBO} | 40 | _ | _ | Vdc | | Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) | | $V_{(BR)EBO}$ | 4.5 | - | _ | Vdc | | Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$ | | I _{CBO} | -
- | _
_ | 0.4
30 | μAdc | | Collector Cutoff Current
(V _{CE} = 20 Vdc, V _{BE} = 0) | MMBT2369A | I _{CES} | _ | _ | 0.4 | μAdc | | ON CHARACTERISTICS | <u>.</u> | | | | | | | DC Current Gain (Note 3) $ \begin{array}{l} (I_C=10 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_C=10 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_C=10 \text{ mAdc}, V_{CE}=0.35 \text{ Vdc}) \\ (I_C=10 \text{ mAdc}, V_{CE}=0.35 \text{ Vdc}, T_{A}=-55^{\circ}\text{C}) \\ (I_C=30 \text{ mAdc}, V_{CE}=0.4 \text{ Vdc}) \\ (I_C=100 \text{ mAdc}, V_{CE}=2.0 \text{ Vdc}) \\ (I_C=100 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \end{array} $ | MMBT2369
MMBT2369A
MMBT2369A
MMBT2369A
MMBT2369A
MMBT2369
MMBT2369A | h _{FE} | 40
-
40
20
30
20
20 | -
-
-
-
- | 120
120
-
-
-
- | - | | | MMBT2369
MMBT2369A
MMBT2369A
MMBT2369A
MMBT2369A | V _{CE} (sat) | -
-
-
- | -
-
-
- | 0.25
0.20
0.30
0.25
0.50 | Vdc | | $\label{eq:base-emitter} \begin{array}{l} \text{Base-Emitter Saturation Voltage (Note 3)} \\ \text{(I}_{\text{C}} = 10 \text{ mAdc, I}_{\text{B}} = 1.0 \text{ mAdc)} \\ \text{(I}_{\text{C}} = 10 \text{ mAdc, I}_{\text{B}} = 1.0 \text{ mAdc, T}_{\text{A}} = -55^{\circ}\text{C)} \\ \text{(I}_{\text{C}} = 30 \text{ mAdc, I}_{\text{B}} = 3.0 \text{ mAdc)} \\ \text{(I}_{\text{C}} = 100 \text{ mAdc, I}_{\text{B}} = 10 \text{ mAdc)} \end{array}$ | MMBT2369A
MMBT2369A
MMBT2369A
MMBT2369A | V _{BE(sat)} | 0.7
-
-
- | -
-
-
- | 0.85
1.02
1.15
1.60 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | | Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$) | | C _{obo} | _ | _ | 4.0 | pF | | Small Signal Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$) | | h _{fe} | 5.0 | _ | _ | ı | | SWITCHING CHARACTERISTICS | | | | | | | | Storage Time $(I_{B1} = I_{B2} = I_C = 10 \text{ mAdc})$ | | t _s | _ | 5.0 | 13 | ns | | Turn-On Time $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc})$ | | t _{on} | _ | 8.0 | 12 | ns | | Turn-Off Time (V_{CC} = 3.0 Vdc, I_{C} = 10 mAdc, I_{B1} = 3.0 mAdc, I_{B2} = 1.5 | t _{off} | _ | 10 | 18 | ns | | ^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. *Total shunt capacitance of test jig and connectors. Figure 1. ton Circuit - 10 mA Figure 2. toff Circuit - 10 mA *Total shunt capacitance of test jig and connectors. Figure 3. ton Circuit - 100 mA Figure 4. toff Circuit - 100 mA Figure 5. Turn-On and Turn-Off Time Test Circuit Figure 6. Junction Capacitance Variations Figure 7. Typical Switching Times Figure 8. Turn-Off Waveform Figure 9. Storage Time Equivalent Test Circuit Figure 10. Maximum Collector Saturation Voltage Characteristics Figure 11. Minimum Current Gain Characteristics Figure 12. Saturation Voltage Limits ### PACKAGE DIMENSIONS SOT-23 (TO-236) CASE 318-08 **ISSUE AN** NOTES: - DIMENSIONING AND TOLERANCING PER ANSI - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 318-01 THRU -07 AND -09 OBSOLETE, NEW - STANDARD 318-08. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.040 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.018 | 0.020 | | С | 0.09 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | Ε | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.081 | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.029 | | ΗE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | STYLE 6: PIN 1. BASE **EMITTER** COLLECTOR ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### PUBLICATION ORDERING INFORMATION ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative