MKL03ZxxVFG4

MKL03ZxxVFK4 MKL03Z32CAF4R MKL03Z32CBF4R

20 WI CSF

2 x 1.61 x 0.56 Pitch 0.4 mm(AF) 2 x 1.61 x 0.32 Pitch 0.4 mm (BF)

24-pin QFN (FK)

4 x 4 x 0.65 Pitch 0.5

mm

Kinetis KL03 32 KB Flash

48 MHz Cortex-M0+ Based Microcontroller

Supports ultra low power 48 MHz devices with up to 32 KB Flash.

World's smallest MCU based on ARM[®] technology. Ideal solution for Internet of Things edge nodes design with ultra small form factor and ultra low power consumption. The products offers:

- Tiny footprint packages, including 1.6 x 2.0 mm² WLCSP
- Run power consumption as low as 50 μA/MHz
- Static power consumption as low as 2.2 μA with 7.5 μs wakeup time for full retention and lowest static mode down to 77 nA in deep sleep
- Highly integrated peripherals, including new boot ROM and high accurate internal voltage reference, etc

Core

• ARM[®] Cortex[®]-M0+ core up to 48 MHz

Memories

- Up to 32 KB program flash memory
- 2 KB SRAM
- 8 KB ROM with build-in bootloader
- 16 bytes regfile

System peripherals

- Nine low-power modes to provide power optimization based on application requirements
- COP Software watchdog
- · Low-leakage wakeup unit
- SWD debug interface and Micro Trace Buffer
- Bit Manipulation Engine

Clocks

- 48 MHz high accuracy internal reference clock
- 8/2 MHz low power internal reference clock
- 32 kHz to 40 kHz crystal oscillator
- 1 kHz LPO clock

Operating Characteristics

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V

• Temperature range (ambient): -40 to 105°C for QFN packages; -40 to 85°C for WLCSP packages

16-pin QFN (FG)

mm

3 x 3 x 0.65 Pitch 0.5

Human-machine interface

· General-purpose input/output up to 22

Communication interfaces

- One 8-bit SPI module
- One LPUART module
- One I2C module supporting up to 1 Mbit/s, with double buffer

Analog Modules

- 12-bit SAR ADC with internal voltage reference, up to 818 ksps and 7 channels
- High-speed analog comparator containing a 6-bit DAC and programmable reference input
- 1.2 V voltage reference (Vref)

Timers

- Two 2-channel Timer/PWM modules
- One low-power timer
- Real time clock

Security and integrity modules

• 80-bit unique identification number per chip

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

Ordering Information1

Part Number	Mer	Maximum number of I\O's	
	Flash (KB)	SRAM (KB)	
MKL03Z8VFG4(R)	8	2	14
MKL03Z16VFG4(R)	16	2	14
MKL03Z32VFG4(R)	32	2	14
MKL03Z32CAF4R	32	2	18
MKL03Z32CBF4R	32	2	18
MKL03Z8VFK4(R)	8	2	22
MKL03Z16VFK4(R)	16	2	22
MKL03Z32VFK4(R)	32	2	22

1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.

Туре	Description	Resource
Selector Guide	The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KL03PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL03P24M48SF0RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL03P24M48SF0 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KL03Z_xN86K ²
Package	Package dimensions are provided in package drawings.	QFN 16-pin: 98ASA00525D ¹
drawing		QFN 24-pin: 98ASA00602D ¹
		WLCSP 20-pin: 98ASA00676D ¹
		WLCSP 20-pin (ultra thin): 98ASA00964D ¹

Related Resources

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

Figure 1. Functional block diagram

Table of Contents

1	Rati	ngs		.5
	1.1	Thermal hand	lling ratings	. 5
	1.2	Moisture han	dling ratings	5
	1.3	ESD handling	g ratings	.5
	1.4	Voltage and o	current operating ratings	6
2	Gen	eral		6
	2.1	AC electrical	characteristics	.6
	2.2	Nonswitching	electrical specifications	.7
		2.2.1 Voltag	ge and current operating requirements	.7
		2.2.2 LVD a	and POR operating requirements	.7
		2.2.3 Voltag	ge and current operating behaviors	.8
		2.2.4 Powe	r mode transition operating behaviors	. 9
		2.2.5 Powe	r consumption operating behaviors	10
		2.2.6 EMC	radiated emissions operating behaviors	. 24
		2.2.7 EMC	Radiated Emissions Web Search	
		Proce	dure boilerplate	25
		2.2.8 Capa	citance attributes	.25
	2.3	Switching spe	ecifications	.25
		2.3.1 Devic	e clock specifications	.25
		2.3.2 Gene	ral switching specifications	26
	2.4	Thermal spec	ifications	. 26
		2.4.1 Thern	nal operating requirements	26
		2.4.2 Thern	nal attributes	.27
3	Peri	pheral operati	ng requirements and behaviors	. 27
	3.1	Core modules	3	27
		3.1.1 SWD	electricals	. 28
	3.2	System modu	ıles	. 29
	3.3	Clock module	9S	. 29
		3.3.1 MCG-	Lite specifications	.29
		3.3.2 Oscill	ator electrical specifications	. 30
	3.4	Memories and	d memory interfaces	31
		3.4.1 Flash	electrical specifications	. 31
	3.5	Security and	integrity modules	33

3.6	Analog	g	33
	3.6.1	ADC electrical specifications	33
	3.6.2	CMP and 6-bit DAC electrical specifications	37
	3.6.3	Voltage reference electrical specifications	39
3.7	Timers	S	40
3.8	Comm	nunication interfaces	40
	3.8.1	SPI switching specifications	41
	3.8.2	Inter-Integrated Circuit Interface (I2C) timing	45
	3.8.3	UART	47
4 Dim	ension	S	47
4.1	Obtain	ning package dimensions	47
5 Pin	out		48
5.1	KL03 s	signal multiplexing and pin assignments	48
5.2	KL03	pinouts	49
6 Ord	ering pa	arts	51
6.1	Deterr	nining valid orderable parts	51
7 Par	t identif	ication	51
7.1	Descri	iption	51
7.2	Forma	ıt	52
7.3	Fields		52
7.4	Examp	ole	52
8 Ter	minolog	y and guidelines	53
8.1	Definit	tion: Operating requirement	53
8.2	Definit	tion: Operating behavior	53
8.3	Definit	tion: Attribute	54
8.4	Definit	tion: Rating	54
8.5	Result	of exceeding a rating	55
8.6	Relation	onship between ratings and operating	
	require	ements	55
8.7		lines for ratings and operating requirements	
8.8	Definit	tion: Typical value	56
8.9	Typica	al value conditions	57
9 Rev	vision hi	istory	57

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. QFN packages moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

Table 3. WLCSP packages moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	1	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 4. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

General

- 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Voltage and current operating ratings 1.4

Table 5. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

General 2

AC electrical characteristics 2.1

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

• $C_L=30 \text{ pF loads}$

- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	—
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	—
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	—
V _{IH}	Input high voltage				—
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	_
I _{ICIO}	IO pin negative DC injection current—single pin • V _{IN} < V _{SS} –0.3V	-5		mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins				_
	Negative current injection	-25	_	mA	
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	—

Table 6. Voltage and current operating requirements

1. All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{IO_MIN} (= V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = ($V_{IO_MIN} - V_{IN}$)/II_{CIO}I.

2.2.2 LVD and POR operating requirements Table 7. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	-
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	• Level 1 falling (LVWV = 00)	2.62	2.70	2.78	v	
V_{LVW2H}	• Level 2 falling (LVWV = 01)	2.72	2.80	2.88	v	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	v	
$V_{\rm LVW4H}$	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	—	±60	_	mV	_
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	-
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	v	
V_{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	v	
V_{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	-	mV	-
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 8. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET)				1, 2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -2.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — High drive pad (except RESET)				1, 2
		V _{DD} – 0.5	—	V	
		V _{DD} – 0.5	—	V	

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OH}} = -20 \text{ mA}$				
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -10 \text{ mA}$				
I _{OHT}	Output high current total for all ports		100	mA	_
V _{OL}	Output low voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 2.5 \text{ mA}$	_	0.5	v	
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 10 \text{ mA}$	_	0.5	v	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	3
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	41	μA	3
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	-	1	μA	-
R _{PU}	Internal pullup resistors	20	50	kΩ	4

Table 8. Voltage and current operating behaviors (continued)

1. I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.

3. Measured at $V_{DD} = 3.6 V$

4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

VLLSx \rightarrow RUN recovery uses LIRC clock mode at the default CPU and system frequency of 8 MHz, and a bus and flash clock frequency of 4 MHz.

Symbol	Description	Min.	Тур.	Max.	Unit	Note
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	152	166	μs	_
	VLLS1 → RUN		150	100		_
	VLLS3 → RUN		152	166	μs	
		—	93	104	μs	
	VLPS → RUN					_
			7.5	8	μs	
	 STOP → RUN 	_	7.5	8	μs	_

Table 9. Power mode transition operating behaviors

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

 Table 10.
 KL03 QFN packages power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current		—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.49	5.71	mA	
	• at 105 °C	_	5.62	5.84		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.16	5.37	mA	
	• at 105 °C	—	5.27	5.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C		6.03	6.27	mA	
	• at 105 °C	_	6.16	6.41		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					3

	· · · · ·					
Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C		3.71	3.86	mA	
	• at 105 °C	—	3.81	3.96		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, $V_{DD} = 3.0 V$					3
	• at 25 °C	—	2.47	2.57	mA	
	• at 105 °C	_	2.58	2.68		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	6.43	6.69	mA	
	• at 105 °C	_	6.56	6.82		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, $V_{DD} = 3.0$ V		5 71	5.04		_
	• at 25 °C	_	5.71	5.94	mA	
	• at 105 °C		5.82	6.05		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V		3.3	3.43	mA	_
	• at 25 °C	_			mA	
	• at 105 °C	—	3.4	3.54		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.28	2.37	mA	_
	• at 105 °C	_	2.38	2.48		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock		2.00	2.10		
	enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	6.1	6.34	mA	
	• at 105 °C	—	6.22	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.14	3.23	mA	
	• at 105 °C	—	3.27	3.36		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
		—	3.54	3.63	mA	
			3.67	3.76		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C					
	• at 105 °C					
DD_VLPRCO	Very-low-power run While(1) loop in flash in compute operation mode— 2 MHz LIRC mode, 2 MHz core/0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	500	750	μA	
DD_VLPRCO	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	188	217	μA	_
IDD_VLPRCO	Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	82	123	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	503	754	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	60	90	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	516	774	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	209	350	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	229	370	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	93	140	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V	_	31	81	μΑ	_

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C					Ì
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	103	154	μA	_
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.4	1.94	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.02	1.24	mA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 V$	_	121	181	μΑ	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	59	97	μA	-
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, V_{DD} = 3.0 V	_	28	42	μA	_
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V_{DD} = 3.0 V					-
		_	1.53	2.03	mA	
DD_PSTOP2	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, V_{DD} = 3.0 V					-
			0.881	1.18	mA	
I _{DD_STOP}	Stop mode current at 3.0 V					-
	• at 25 °C and below	—	158	175.7		
	• at 50 °C	—	164	179.48		
	• at 85 °C	—	187	199.54	μΑ	
	• at 105 °C		219	236.43		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below	_	2.2	2.71		-
	• at 50 °C	_	3.9	6.63		
	• at 85 °C	_	13.9	18.25	μA	
	• at 105 °C	_	28.4	36.59	·	
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V					
00_110	 at 25 °C and below 		2.2	2.674		

General

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 85 °C	_	13.2	17.37	μA	
	• at 105 °C	_	27.8	35.54		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all					
	peripheral disable, at 3.0 V		1.08	1.17	μA	
	• at 25 °C and below	_	1.4	1.52		
	• at 50 °C	_	3.45	3.96		
	• at 85 °C		7.02	8.19		
	• at 105 °C		7.02	0.10		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					
	current, at 3.0 V • at 25 °C and below		1.47	1.56	μA	
	• at 50 °C		1.82	1.94		
		_	3.93	4.44		
	• at 85 °C		7.6	8.77		
	• at 105 °C					
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					
	current, at 1.8 V • at 25 °C and below	—	1.33	1.42	μA	
	• at 50 °C		1.65	1.77		
	• at 85 °C	_	3.56	4.07		
	• at 105 °C	_	6.92	8.09		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V					
	• at 25 °C and below		566	690		
	• at 50°C	—	788	839		
	• at 85°C	—	2270	2600	nA	
	• at 105 °C	—	4980	5820		
1						
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V		000	1050		
	• at 25 °C and below		969	1059		
	• at 50°C		1200	1251		
	• at 85°C	—	2740	3070	nA	
	• at 105 °C		5610	6450		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					
	enabled at 1.8 V	_	826	916		
	• at 25 °C and below	_	1040	1091		
	• at 50°C	_	2400	2730	nA	
	• at 85°C		4910	5750		
	• at 105 °C			0100		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V		265	373		_
	• at 25 °C and below					
	• at 50 °C	—	467	512.9	nA	
	• at 85 °C	—	1920	2256		
	• at 105 °C	—	4540	5395		
IDD_VLLS0	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					4
	= 1) at 3 V • at 25 °C and below	—	77	350		
	• at 50 °C	—	255	465.70	nA	
	● at 85 °C	—	1640	1994		
	• at 105 °C	—	4080	4956		

Table 10. KL03 QFN packages power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 4. No brownout

Table 11. KL03 WLCSP package power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	2
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	—	5.49	5.71	mA	
	• at 85 °C	_	5.59	5.81		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					3
	• at 25 °C	_	5.16	5.37	mA	
	• at 85 °C	_	5.24	5.45		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					3
	• at 25 °C	—	6.03	6.27	mA	
	• at 85 °C	_	6.13	6.38		

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, $V_{DD} = 3.0 V$				_	3
	• at 25 °C	—	3.71	3.86	mA	
	• at 85 °C	—	3.78	3.93		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.47	2.57	mA	3
	• at 85 °C	—	2.55	2.65		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	6.43 6.53	6.69 6.79	mA	3
			0.55	0.79		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		5.71 5.79	5.94 6.02	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		3.3 3.37	3.43 3.50	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C	_	2.28 2.35	2.37 2.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 85 °C		6.1 6.19	6.34 6.44	mA	_
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V_{DD} = 3.0 V	_	3.14 3.24	3.23 3.33	mA	_

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C					
	• at 85 °C					
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0					_
	V		3.54	3.63	mA	
	• at 25 °C	_	3.64	3.73		
	• at 85 °C					
DD_VLPRCO	compute operation mode— 2 MHz LIRC mode, 2 MHz core/0.5 MHz flash, V _{DD} = 3.0 V		500	750		
1	• at 25 °C		500	750	μA	
DD_VLPRCO	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	188	217	μΑ	
DD_VLPRCO					P** ' `	
UD_VLPRCO	compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	82	123	μA	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz				P	
'DD_VLPR	LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	503	754	μA	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	60	90	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	516	774	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	209	350	μA	_
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	229	370	μA	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all					—

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
-	peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C		93	140	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	31	81	μΑ	_
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	103	154	μΑ	_
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.4	1.94	mA	-
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.02	1.24	mA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 \text{ V}$	_	121	181	μA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	59	97	μA	_
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	_	28	42	μA	_
DD_PSTOP2	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, $V_{DD} = 3.0 V$					-
			1.53	2.03	mA	
DD_PSTOP2	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 V$					-
		_	0.881	1.18	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	158	175.7		_
	• at 50 °C	_	164	179.48		
	• at 85 °C	_	187	199.54	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below	_	2.2	2.71		-
			3.9	6.63		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 50 °C	_	13.9	18.25	μA	
	• at 85 °C					
IDD_VLPS	Very-low-power stop mode current at 1.8 V					_
	• at 25 °C and below	_	2.2	2.674		
	• at 50 °C	_	3.8	6.44		
	• at 85 °C	_	13.2	17.37	μA	
DD_VLLS3	Very-low-leakage stop mode 3 current, all					_
	peripheral disable, at 3.0 V • at 25 °C and below	_	1.08	1.17	μA	
	• at 50 °C	_	1.4	1.52		
	• at 85 °C	_	3.45	3.96		
DD_VLLS3	Very-low-leakage stop mode 3 current with					_
_	RTC current, at 3.0 V • at 25 °C and below	_	1.47	1.56	μA	
	• at 50 °C	_	1.82	1.94		
	• at 85 °C	_	3.93	4.44		
DD_VLLS3	Very-low-leakage stop mode 3 current with RTC current, at 1.8 V				μA	-
	• at 25 °C and below	_	1.33	1.42	P., .	
	• at 50 °C	_	1.65	1.77		
	• at 85 °C	_	3.56	4.07		
IDD_VLLS1	Very-low-leakage stop mode 1 current all					
	peripheral disabled at 3.0 V • at 25 °C and below	_	566	690		
		_	788	839		
	 at 50°C at 85°C 	_	2270	2600	nA	
DD_VLLS1	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V					-
	• at 25 °C and below	_	969	1059		
	• at 50°C	_	1200	1251		
	• at 85°C	_	2740	3070	nA	
IDD_VLLS1	Very-low-leakage stop mode 1 current RTC					
50_1101	enabled at 1.8 V	_	826	916		
	• at 25 °C and below	_	1040	1091		
	• at 50°C	_	2400	2730	nA	
	• at 85°C		2,000			
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled					_
	Loenoneral disabled	1	1	1	1	1

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

General

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	 at 25 °C and below 	—	467	512.9		
	• at 50 °C	—	1920	2256	nA	
	• at 85 °C					
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled					4
	(SMC_STOPCTRL[PORPO] = 1) at 3 V • at 25 °C and below	_	77	350		
	• at 50 °C	—	255	465.70	nA	
	• at 85 °C	_	1640	1994		

Table 11. KL03 WLCSP package power consumption operating behaviors (continued)

1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.

4. No brownout

Table 12. Low power mode peripheral adders — typical value

Symbol	Description			Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105 ¹	
I _{LIRC8MHz}	8 MHz internal reference clock (LIRC) adder. Measured by entering STOP or VLPS mode with 8 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	68	68	68	68	68	68	μA
I _{LIRC2MHz}	2 MHz internal reference clock (LIRC) adder. Measured by entering STOP mode with the 2 MHz LIRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	27	27	27	27	27	27	μA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal							
	enabled. • VLLS1	340	410	460	470	480	600	
	VLLS3	340	410	460	490	530	600	
	VLPS STOP	340	420	480	570	610	850	
		340	420	480	570	610	850	nA
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.							nA
		30	30	30	85	100	200	

Symbol	Description		•	Tempera	ature (°C	C)		Unit
		-40	25	50	70	85	105 ¹	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	15	15	15	15	15	15	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	340	440	440	480	520	620	nA
I _{UART}	 UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. LIRC8M (8 MHz internal reference clock) LIRC2M (2 MHz internal 	85 28	85 28	85 28	85 28	85 28	85 28	μΑ
I _{TPM}	reference clock) TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • LIRC8M (8 MHz internal reference clock) • LIRC2M (2 MHz internal reference clock)	93 35	93 35	93 35	93 35	93 35	93 35	μΑ
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	340	340	340	340	340	340	μA

Table 12. Low power mode peripheral adders — typical value (continued)

1. For QFN packages only.

General

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 3. Run mode supply current vs. core frequency (loop located in flash)

General

Figure 4. Run mode supply current vs. core frequency (loop located in SRAM)

Figure 5. VLPR mode current vs. core frequency (loop in SRAM)

2.2.6 EMC radiated emissions operating behaviors

Table 13. EMC radiated emissions operating behaviors for 24-pin QFN package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	5	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	7	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	5	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC/SAE level	0.15–1000	Ν		2, 3

1. Determined according to IEC 61967-2 (and SAE J1752/3) radiated radio frequency (RF) emissions measurement standard. Typical Configuration: Appendix B: DUT Software Configuration—2. Typical Configuration.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{irc48m} = 48 MHz, f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, L≤24 dBµV, K≤30 dBµV, I ≤ 36 dBµV, H ≤ 42 dBµV, G≤48 dBµV.

2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design"

2.2.8 Capacitance attributes

Table 14. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 15. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode		•	
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock		24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹		•	•
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz
f _{ERCLK}	External reference clock	_	32.768	kHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock		8	MHz

General

- The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16		ns	2
Port rise and fall time	—	36	ns	3

Table 16. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 17. Thermal operating requirements of WLCSP package

Γ	Symbol	Description	Min.	Max.	Unit	Note
Γ	TJ	Die junction temperature	-40	95	°C	
	T _A	Ambient temperature	-40	85	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

Table 18. Thermal operating requirements of other packages

Symbol	Description	Min.	Max.	Unit	Note
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

Board type	Symbol	Description	16 QFN	20 WLCSP	24 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	64.2	69.8	60.7	°C/W	1,2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53.3	57.5	48.5	°C/W	1,2,3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	55.4	62.03	51.0	°C/W	1,3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	48.9	54.3	43.6	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	33.5	51.64	30.4	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	20.9	0.73	9.8	°C/W	5
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	0.2	0.2	°C/W	6
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	22.4	_	21.8	°C/W	7

2.4.2 Thermal attributes

Table 19. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 20	SWD full	voltage	range	electricals
	SWD Iuli	vonaye	lange	electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
JЗ	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

Figure 6. Serial wire clock input timing

Figure 7. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications Table 21. HIRC48M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	—	3.6	V	—
I _{DD48M}	Supply current		400	500	μA	—
f _{irc48m}	Internal reference frequency	—	48	—	MHz	—
$\Delta f_{irc48m_ol_lv}$	total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature				%f _{irc48m}	_
		—	± 0.5	±1.5		

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
$\Delta f_{irc48m_ol_hv}$	total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature					—
		—	± 0.5	±1.0	%f _{irc48m}	
J _{cyc_irc48m}	Period Jitter (RMS)	—	35	150	ps	—
t _{irc48mst}	Startup time		2	3	μs	1

Table 21. HIRC48M specification (continued)

1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by setting MCG_MC[HIRCEN] = 1. See reference manual for details.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.08	—	1.47	V	_
Т	Temperature range	-40	—	125	°C	_
I _{DD_2M}	Supply current in 2 MHz mode	_	14	17	μA	_
I _{DD_8M}	Supply current in 8 MHz mode	—	30	35	μA	_
f _{IRC_2M}	Output frequency	_	2	—	MHz	—
f _{IRC_8M}	Output frequency	_	8	_	MHz	_
f _{IRC_T_2M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	V _{DD} ≥1.89 V
f _{IRC_T_8M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	V _{DD} ≥1.89 V
T _{su_2M}	Startup time	_	—	12.5	μs	_
T _{su_8M}	Startup time	_	_	12.5	μs	_

Table 22. LIRC8M/2M specification

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 23. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	—
IDDOSC	Supply current — low-power mode					1
	• 32 kHz	_	500	_	nA	
C _x	EXTAL load capacitance	_	_	_		2, 3
Cy	XTAL load capacitance	—	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode	—	—	—	MΩ	2, 4
R_S	Series resistor — low-frequency, low-power mode				kΩ	_

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode	—	0.6		V	—

Table 23. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 24. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode	32	—	40	kHz	_
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	—
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode		750		ms	1, 2

1. Proper PC board layout procedures must be followed to achieve specifications.

2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

Table 25. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 26. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	0.5	ms	_
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	—	61	500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 27. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 28. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program	n Flash				
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	—
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

3.6.1.1 12-bit ADC operating conditions Table 29. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage		V _{REFL}		V _{REFH}	V	
C _{ADIN}	Input capacitance	8-bit / 10-bit / 12-bit modes	_	4	5	pF	
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0	_	18.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 12-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	6

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

Peripheral operating requirements and behaviors

- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 8. ADC input impedance equivalency diagram

3.6.1.2 12-bit ADC electrical characteristics

Table 30.	12-bit ADC	characteristics	$(V_{REFH} =$	V _{DDA} ,	V _{REFL} =	V _{SSA})
-----------	------------	-----------------	---------------	--------------------	---------------------	--------------------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		 ADLPC = 0, ADHSC = 0 	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for	sample time	es	I		
TUE	Total	12-bit modes	_	±6	_	LSB ⁴	5
	unadjusted error	<12-bit modes		±3	±6		

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
DNL	Differential non- linearity	12-bit modes	_	±0.9	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.4	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.5	–2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	5	—	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		• <12-bit modes	—	2	3		
EQ	Quantization error	12-bit modes	_	_	±0.5	LSB ⁴	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 30. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. ADC conversion clock < 3 MHz

Table 31.	12-bit ADC characteristics	(V _{REFH} =	V_{REFO} ,	$V_{REFL} =$	V _{SSA})
-----------	----------------------------	----------------------	--------------	--------------	--------------------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	 ADLPC = 1, ADHSC = 1 	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		 ADLPC = 0, ADHSC = 0 	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	Sample Time	See Reference Manual chapter for	r sample tim	nes			
TUE	Total	12-bit modes	—	±4	±6.8	LSB ⁴	5
	unadjusted error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.2	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	–0.7 to +0.5		
E_{FS}	Full-scale error	12-bit modes		-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	—	_	±0.5	LSB ⁴	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 31. 12-bit ADC characteristics ($V_{REFH} = V_{REFO}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{REFO}

Typical values assume V_{REFO} = 1.2 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

4. 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

6. ADC conversion clock < 3 MHz

Figure 9. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	$V_{SS} - 0.3$	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—		20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	—		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs

Table continues on the next page ...

Table 32. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = $V_{reference}/64$

Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	—
T _A	Temperature	Operating t range of t		°C	—
CL	Output load capacitance	1(00	nF	1, 2

Table 33. VREF full-range operating requirements

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 34 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)	—	_	50	mV	1
Ac	Aging coefficient	_	_	400	uV/yr	
I _{bg}	Bandgap only current	_	—	80	μA	1
I _{lp}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	2	—	mV	1

 Table 34.
 VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 35. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	—

Table 36. VREF limited-range operating behaviors

Symbol Description		Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to $20\% V_{DD}$ and $80\% V_{DD}$ thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	22	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	-
	t _{FO}	Fall time output				

 Table 37. SPI master mode timing on slew rate disabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—

Table continues on the next page...

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	—	52	ns	
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	_
	t _{FO}	Fall time output]			

Table 38. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0, f_{periph} is the bus clock (f_{BUS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 12. SPI master mode timing (CPHA = 0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	3	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	23	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	23	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	25.7	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

Table 39. SPI slave mode timing on slew rate disabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 40. SPI slave mode timing on slew rate enabled pads

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2.
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state

Figure 14. SPI slave mode timing (CPHA = 0)

Figure 15. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 41. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100 ¹	0	400 ²	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ³	3.45 ⁴	0 ⁵	0.9 ³	μs
Data set-up time	t _{SU} ; DAT	250 ⁶	_	100 ⁴ , ⁷	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁸	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁷	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The PTB3 and PTB4 pins can support only the Standard mode.

2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the normal drive pins and VDD \ge 2.7 V.

Peripheral operating requirements and behaviors

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 5. Input signal Slew = 10 ns and Output Load = 50 pF
- 6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 7. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 8. C_b = total capacitance of the one bus line in pF.

To achieve 1MHz I2C clock rates, consider the following recommendations:

- To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate.
- Use high drive pad and DSE bit should be set in PORTx_PCRn register.
- Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching.
- Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5		μs
HIGH period of the SCL clock	t _{HIGH}	0.26	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	—	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	—	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 42. I²C 1Mbit/s timing

1. The maximum SCL clock frequency of 1 Mbit/s can support 200 pF bus loading when using the normal drive pins and VDD \ge 2.7 V.

2. C_b = total capacitance of the one bus line in pF.

Dimensions

Figure 16. Timing definition for devices on the I²C bus

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin QFN	98ASA00525D
24-pin QFN	98ASA00602D
20-pin WLCSP	98ASA00676D
20-pin WLCSP (ultra thin)	98ASA00964D

5 Pinout

5.1 KL03 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

PTB3 and PTB4 are true open drain pins. The external pullup resistor must be added to make them output correct values in using I2C, GPIO, and LPUART0.

24 QFN	20 WLC	16 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
1	SP —	-	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED		PTB6/ IRQ_2/ LPTMR0_ALT3	TPM1_CH1	TPM_CLKIN1		
2	-	-	PTB7/ IRQ_3	DISABLED		PTB7/ IRQ_3	TPM1_CH0			
3	B5	1	VDD	VDD	VDD					
4	C5	2	VSS	VSS	VSS					
5	C4	3	PTA3	EXTAL0	EXTAL0	PTA3	I2C0_SCL	I2C0_SDA	LPUART0_TX	
6	C3	4	PTA4	XTALO	XTAL0	PTA4	I2C0_SDA	I2C0_SCL	LPUART0_RX	CLKOUT
7	D3	5	PTA5/ RTC_CLK_IN	DISABLED		PTA5/ RTC_CLK_IN	TPM0_CH1	SPI0_SS_b		
8	D5	6	PTA6	DISABLED		PTA6	TPM0_CH0	SPI0_MISO		
9	_	_	PTB10	DISABLED		PTB10	TPM0_CH1	SPI0_SS_b		
10	_	_	PTB11	DISABLED		PTB11	TPM0_CH0	SPI0_MISO		
11	D4	7	PTA7/ IRQ_4	DISABLED		PTA7/ IRQ_4	SPI0_MISO	SPI0_MOSI		
12	C1	8	PTB0/ IRQ_5/ LLWU_P4	ADC0_SE9	ADC0_SE9	PTB0/ IRQ_5/ LLWU_P4	EXTRG_IN	SPI0_SCK	I2C0_SCL	
13	D1	9	PTB1/ IRQ_6	ADC0_SE8/ CMP0_IN3	ADC0_SE8/ CMP0_IN3	PTB1/ IRQ_6	LPUART0_TX	LPUART0_RX	I2C0_SDA	
14	B1	10	PTB2/ IRQ_7	VREF_OUT/ CMP0_IN5	VREF_OUT/ CMP0_IN5	PTB2/ IRQ_7	LPUART0_RX	LPUART0_TX		
15	D2	-	PTA8	ADC0_SE3	ADC0_SE3	PTA8	I2C0_SCL	SPI0_MOSI		
16	C2	-	PTA9	ADC0_SE2	ADC0_SE2	PTA9	I2C0_SDA	SPI0_SCK		

24 QFN	20 WLC SP	16 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5
17	A1	11	PTB3/ IRQ_10	DISABLED		PTB3/ IRQ_10	I2C0_SCL	LPUART0_TX		
18	B2	12	PTB4/ IRQ_11	DISABLED		PTB4/ IRQ_11	I2C0_SDA	LPUART0_RX		
19	A2	13	PTB5/ IRQ_12	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_12	TPM1_CH1	NMI_b		
20	B3	-	PTA12/ IRQ_13/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_13/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0		CLKOUT
21	A3	_	PTB13/ CLKOUT32K	DISABLED		PTB13/ CLKOUT32K	TPM1_CH1	RTC_CLKOUT		
22	A4	14	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE15/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK		
23	B4	15	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b		PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b		
24	A5	16	PTA2	SWD_DIO		PTA2	CMP0_OUT	SWD_DIO		

5.2 KL03 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL03 signal multiplexing and pin assignments.

Figure 17. KL03 24-pin QFN pinout diagram

	1	2	3	4	5
А	PTB3	PTB5	PTB13	PTA0	PTA2
в	PTB2	PTB4	PTA12	PTA1	VDD
с	PTB0	PTA9	PTA4	PTA3	VSS
D	PTB1	PTA8	PTA5	PTA7	PTA6

Figure 18. KL03 20-pin WLCSP pinout diagram

Figure 19. KL03 16-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search.

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow(full reels for WLCSP) P = Prequalification K = Fully qualified, general market flow, 100 pieces reels (WLCSP only)
KL##	Kinetis family	• KL03
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 8 = 8 KB 16 = 16 KB 32 = 32 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FG = 16 QFN (3 mm x 3 mm) AF = 20 WLCSP (2 mm x 1.61 mm x 0.56 mm) BF = 20 WLCSP (2 mm x 1.61 mm x 0.32 mm) FK = 24 QFN (4 mm x 4 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

Table 43. Part number fields description

7.4 Example

This is an example part number:

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

• Never exceed any of the chip's ratings.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Table 44. Typical value conditions

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3.1	07/2014	Initial public release.
4		Changed pinout signal names ADC0_SE5, ADC0_SE6, and ADC0_SE12 to ADC0_SE8, ADC0_SE9 and ADC0_SE15 respectively.

Table 45. Revision history

Table continues on the next page...

Rev. No.	Date	Substantial Changes
5	07/2017	 Added new part of MKL03Z32CBF4R and its package information. Updated the Resource and its footnote to the Chip Errata in the front page Updated the descriptions to the VLPW to be very low power wait mode in the Power consumption operating behaviors Added a note to the T_A in the Thermal operating requirements Updated the foot note to the Typ. of the Table 31 to be VREFO = 1.2 V Added I2C 1 Mbit/s timing specifications in Inter-Integrated Circuit Interface (I2C) timing Updated the 20-pin WLCSP package (AF) size in Fields
5.1	08/2017	Updated the Max. of MSL for WLCSP packages to 1 in the Moisture handling ratings

Table 45. Revision history (continued)

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2017 NXP B.V.

Document Number KL03P24M48SF0 Revision 5.1 08/2017

