8-Stage Shift/Store Register with Three-State Outputs The MC14094B combines an 8-stage shift register with a data latch for each stage and a 3-state output from each latch. Data is shifted on the positive clock transition and is shifted from the seventh stage to two serial outputs. The Q_S output data is for use in high–speed cascaded systems. The Q_S output data is shifted on the following negative clock transition for use in low–speed cascaded systems. Data from each stage of the shift register is latched on the negative transition of the strobe input. Data propagates through the latch while strobe is high. Outputs of the eight data latches are controlled by 3-state buffers which are placed in the high-impedance state by a logic Low on Output Enable. #### **Features** - 3-State Outputs - Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range - Input Diode Protection - Data Latch - Dual Outputs for Data Out on Both Positive and Negative Clock Transitions - Useful for Serial-to-Parallel Data Conversion - Pin-for-Pin Compatible with CD4094B - Pb-Free Packages are Available* #### MAXIMUM RATINGS (Voltages Referenced to VSS) | Symbol | Parameter | Value | Unit | |------------------------------------|---|--------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to $V_{DD} + 0.5$ | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ## ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS PDIP-16 P SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Indicator #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **PIN ASSIGNMENT** # **TRUTH TABLE** | | Output | | Parallel Outputs Serial Ou | | Parallel Outputs | | Outputs | |-------|--------|--------|----------------------------|---------|-------------------|------------------|-----------------| | Clock | Enable | Strobe | Data | Q1 | Q _N | Q _S * | Q′ _S | | | 0 | Х | Х | Z | Z | Q7 | No Chg. | | ~ | 0 | Х | Х | Z | Z | No Chg. | Q7 | | | 1 | 0 | Х | No Chg. | No Chg. | Q7 | No Chg. | | | 1 | 1 | 0 | 0 | Q _N -1 | Q7 | No Chg. | | | 1 | 1 | 1 | 1 | Q _N -1 | Q7 | No Chg. | | ~ | 1 | 1 | 1 | No Chg. | No Chg. | No Chg. | Q7 | Z = High Impedance X = Don't Care ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|-------------------------------------|--------------------------| | MC14094BCP | PDIP-16 | 500 Units / Rail | | MC14094BCPG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC14094BD | SOIC-16 | 48 Units / Rail | | MC14094BDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14094BDR2 | SOIC-16 | 2500 Units / Tape & Reel | | MC14094BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | | MC14094BDTR2 | TSSOP-16* | 2500 Units / Tape & Reel | | MC14094BF | SOEIAJ-16 | 50 Units / Rail | | MC14094BFG | SOEIAJ-16 50 Units / Rail (Pb-Free) | | | MC14094BFEL | SOEIAJ-16 | 2000 Units / Tape & Reel | | MC14094BFELG | SOEIAJ-16
(Pb-Free) | 2000 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb–Free. ^{*} At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Qs. # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | V _{DD} | - 5 | 5°C | | 25°C | | 12 | 5°C | | |---|---------------------|------------------------|-----------------------------------|----------------------|-----------------------------------|---|----------------------|-----------------------------------|----------------------|------| | Characteristic | Symbol | Vdc | Min | Max | Min | Typ ⁽²⁾ | Max | Min | Max | Unit | | Output Voltage "0" Le V _{in} = V _{DD} or 0 | vel V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | "1" Le | vel V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage "0" Le $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$ | vel V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | "1" Le $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | vel V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | Vdc | | Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ Sou $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | ce I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | -
-
-
- | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | -
-
-
- | - 1.7
- 0.36
- 0.9
- 2.4 | -
-
-
- | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$ S $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$ | nk I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | I _{in} | 15 | - | ± 0.1 | - | ±0.00001 | ± 0.1 | - | ± 1.0 | μAdc | | Input Capacitance (V _{in} = 0) | C _{in} | _ | _ | _ | _ | 5.0 | 7.5 | _ | _ | pF | | Quiescent Current
(Per Package) | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Total Supply Current ⁽³⁾ ⁽⁴⁾ (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching) | I _T | 5.0
10
15 | | | $I_T = ($ | 4.1 μΑ/kHz) f
14 μΑ/kHz) f
40 μΑ/kHz) | + I _{DD} | | | μAdc | | 3-State Output Leakage Current | I _{TL} | 15 | _ | ± 0.1 | - | ± 0.0001 | ± 0.1 | _ | ± 3.0 | μΑ | ^{2.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001. ^{3.} The formulas given are for the typical characteristics only at 25°C. 4. To calculate total supply current at loads other than 50 pF: # SWITCHING CHARACTERISTICS (5) (C_L = 50 pF, T_A = 25°C) | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ ⁽⁶⁾ | Max | Unit | |--|--|------------------------|------------------|--------------------|--------------------|------| | Output Rise and Fall Time t_{TLH} , t_{THL} = (1.35 ns/pF) C_L + 33 ns t_{TLH} , t_{THL} = (0.6 ns/pF) C_L + 20 ns t_{TLH} , t_{THL} = (0.4 ns/pF) C_L + 20 ns | t _{TLH} ,
t _{THL} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time Clock to Serial out QS t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 305 ns t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L + 107 ns t _{PLH} , t _{PHL} = (0.26 ns/pF) C L + 82 ns | t _{PLH} ,
t _{PHL} | 5.0
10
15 | -
-
- | 350
125
95 | 600
250
190 | ns | | Clock to Serial out Q'S $t_{PLH}, t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_L + 350 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_L + 149 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_L + 62 \text{ ns}$ | | 5.0
10
15 | -
-
- | 230
110
75 | 460
220
150 | | | Clock to Parallel out $t_{PLH},t_{PHL}=(0.90\;\text{ns/pF})\;C_L+375\;\text{ns}$ $t_{PLH},t_{PHL}=(0.35\;\text{ns/pF})\;C_L+177\;\text{ns}$ $t_{PLH},t_{PHL}=(0.26\;\text{ns/pF})\;C_L+122\;\text{ns}$ | | 5.0
10
15 | -
-
- | 420
195
135 | 840
390
270 | | | Strobe to Parallel out $t_{PLH}, t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_{L} + 245 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 127 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 87 \text{ ns}$ | | 5.0
10
15 | -
-
- | 290
145
100 | 580
290
200 | | | Output Enable to Output $ \begin{array}{l} t_{PHZ}, \ t_{PZL} = (0.90 \ \text{ns/pF}) \ \text{C}_{\text{L}} + 95 \ \text{ns} \\ t_{PHZ}, \ t_{PZL} = (0.36 \ \text{ns/PF}) \ \text{C}_{\text{L}} + 57 \ \text{ns} \\ t_{PHZ}, \ t_{PZL} = (0.26 \ \text{ns/pF}) \ \text{C}_{\text{L}} + 42 \ \text{ns} \end{array} $ | t _{PHZ} , t _{PZL} | 5.0
10
15 | -
-
- | 140
75
55 | 280
150
110 | | | t_{PLZ} , t_{PZH} = (0.90 ns/pF) C_L + 180 ns t_{PLZ} , t_{PZH} = (0.36 ns/pF) C_L + 77 ns t_{PLZ} , t_{PZH} = (0.26 ns/pF) C_L + 57 ns | t _{PLZ} ,
t _{PZH} | 5.0
10
15 | -
-
- | 225
95
70 | 450
190
140 | | | Setup Time
Data in to Clock | t _{su} | 5.0
10
15 | 125
55
35 | 60
30
20 | -
-
- | ns | | Hold Time
Clock to Data | t _h | 5.0
10
15 | 0
20
20 | - 40
- 10
0 | -
-
- | ns | | Clock Pulse Width, High | t _{WH} | 5.0
10
15 | 200
100
83 | 100
50
40 | -
-
- | ns | | Clock Rise and Fall Time | $\begin{matrix} t_{r(\text{cl})} \\ t_{f(\text{cl})} \end{matrix}$ | 5
10
15 | | -
-
- | 15
5.0
4.0 | μS | | Clock Pulse Frequency | f _{cl} | 5.0
10
15 | -
-
- | 2.5
5.0
6.0 | 1.25
2.5
3.0 | MHz | | Strobe Pulse Width | t _{WL} | 5.0
10
15 | 200
80
70 | 100
40
35 | -
-
- | ns | ^{5.} The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. #### **3-STATE TEST CIRCUIT** ## **BLOCK DIAGRAM** # **DYNAMIC TIMING DIAGRAM** ## **PACKAGE DIMENSIONS** #### PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 **ISSUE T** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | | |-----|-------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | | В | 0.250 | 0.270 | 6.35 | 6.85 | | | С | 0.145 | 0.175 | 3.69 | 4.44 | | | D | 0.015 | 0.021 | 0.39 | 0.53 | | | F | 0.040 | 0.70 | 1.02 | 1.77 | | | G | 0.100 | BSC | 2.54 BSC | | | | Н | 0.050 | BSC | 1.27 BSC | | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.130 | 2.80 | 3.30 | | | L | 0.295 | 0.305 | 7.50 | 7.74 | | | M | 0° | 10 ° | 0 ° | 10 ° | | | S | 0.020 | 0.040 | 0.51 | 1.01 | | #### SOIC-16 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIDE. - PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|--------|---------|-----------|-------|--| | DIM | MIN | MIN MAX | | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | P | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | #### **PACKAGE DIMENSIONS** #### TSSOP-16 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948F-01 **ISSUE A** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIN | IETERS | INC | HES | |-----|----------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | C | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 BSC | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | 7 | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 | | | М | 0° | 8° | 0° | 8 ° | #### **PACKAGE DIMENSIONS** #### SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE CASE 966-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (n 006) PER SIDE. - OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | |----------------|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | p | 0.35 | 0.50 | 0.014 | 0.020 | | C | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Ε | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 | BSC | 0.050 BSC | | | ΗE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | F | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10° | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | | 0.031 | ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.