3.3V ECL Differential Receiver

Description

The MC100LVEL16 is a differential receiver. The device is functionally equivalent to the EL16 device, operating from a 3.3 V supply. The LVEL16 exhibits a wider V_{IHCMR} range than its EL16 counterpart. With output transition times and propagation delays comparable to the EL16 the LVEL16 is ideally suited for interfacing with high frequency sources at 3.3 V supplies.

Under open input conditions, the Q input will be pulled down to V_{EE} and the \overline{Q} input will be biased to $V_{CC}/2$. This condition will force the Q output low.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

- 300 ps Propagation Delay
- High Bandwidth Output Transitions
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -3.8 V
- Internal Input Pulldown Resistors on D, Pullup and Pulldown Resistors on D
- Q Output will Default LOW with Inputs Open or at V_{EE}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D, D Q, Q V _{BB} V _{CC} V _{EE} NC EP	ECL Data Inputs ECL Data Outputs Reference Voltage Output Positive Supply Negative Supply No Connect (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Figure 1. Logic Diagram and Pinout Assignment

Table 2. ATTRIBUTES

Characteristi	Value						
Internal Input Pulldown Resistor		75 kΩ					
Internal Input Pullup Resistor		75 kΩ					
ESD Protection	Human Body Model Machine Model Charged Device Model	> 4 KV > 400 V > 2 kV					
Moisture Sensitivity, Indefinite Time ou Pb-Free Packages (Note 1)	tt of Drypack, SOIC–8 TSSOP–8 DFN8	Level 1 Level 3 Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in					
Transistor Count		79					
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

1. Refer to Application Note AND8003/D for additional information.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8 to 0	V
VI	PECL Mode Input Voltage	V _{EE} = 0 V	$V_{I} \leq V_{CC}$	6 to 0	V
	NECL Mode Input Voltage	$V_{CC} = 0 V$	$V_{I}\!\geq\!V_{EE}$	-6 to 0	V
I _{out}	Output Current	Continuous		50	mA
		Surge		100	mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM	SO-8	190	°C/W
		500 LFPM	SO-8	130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM	TSSOP-8	185	°C/W
		500 LFPM	TSSOP-8	140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to $44 \pm 5\%$	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm	DFN8	129	°C/W
		500 lfpm	DFN8	84	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
θ _{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single–Ended)	1490		1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 5) Vpp < 500 mV Vpp ≧ 500 mV	1.2 1.5		2.9 2.9	1.1 1.4		2.9 2.9	1.1 1.4		2.9 2.9	v v
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -600			0.5 -600			0.5 -600			μΑ μΑ

Table 4. LVPECL DC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 3)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single–Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 8) Vpp < 500 mV Vpp ≧ 500 mV	-2.1 -1.8		-0.4 -0.4	-2.2 -1.9		-0.4 -0.4	-2.2 -1.9		-0.4 -0.4	v v
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current D D	0.5 -600			0.5 -600			0.5 -600			μΑ μΑ

Table 5. LVNECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 6)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V. 7. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V. 8. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

			–40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		1.75			1.75			1.75		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output Differential Single-Ended	150 100	275 275	400 450	225 175	300 300	375 425	240 190	315 315	390 440	ps
t _{SKEW}	Duty Cycle Skew (Differential) (Note 10)		5	30		5	20		5	20	ps
t _{JITTER}	Random Clock Jitter (RMS)		0.7			0.7			0.7		ps
V _{PP}	Input Swing (Note 11)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	120	220	320	120	220	320	120	220	320	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. V_{EE} can vary ±0.3 V.

10. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
 11. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL16DG	SO-8 (Pb-Free)	98 Units / Rail
MC100LVEL16DR2G	SO-8 (Pb-Free)	2500 Tape & Reel
MC100LVEL16DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100LVEL16DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel
MC100LVEL16MNR4G	DFN8 (Pb–Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
κ	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** CASE 948R-02 **ISSUE A**

DETAIL E

	NOT
 DIMENSIONING AND TOLERANCING PER ANSI 	1.

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	2.90	3.10	0.114	0.122			
В	2.90	3.10	0.114	0.122			
C	0.80	1.10	0.031	0.043			
D	0.05	0.15	0.002	0.006			
F	0.40	0.70	0.016	0.028			
G	0.65	BSC	0.026	BSC			
K	0.25	0.40	0.010	0.016			
L	4.90	BSC	0.193 BSC				
M	0 °	6 °	0°	6 °			

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product series and solicitor, and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative