

PCM Input Class D Audio Power Amplifiers

General Description

The MAX98355A/MAX98355B are digital pulse-code modulation (PCM) input Class D power amplifiers that provide Class AB audio performance with Class D efficiency. These ICs offer five selectable gain settings (3dB, 6dB, 9dB, 12dB, and 15dB) set by a single gain-select input (GAIN).

The digital audio interface is highly flexible with the MAX98355A supporting I²S data and the MAX98355B supporting left-justified data. Both ICs support time division multiplexed (TDM) data. The digital audio interface accepts sample rates ranging from 8kHz to 96kHz for all supported data formats. The ICs can be configured to produce a left channel, right channel, or (left + right)/2 output from the stereo input data. The ICs operate using 16/24/32-bit data for I²S and left justified modes as well as 16-bit data with up to four slots when using TDM mode. The ICs eliminate the need for the external MCLK signal that is typically used for PCM communication. This reduces EMI and possible board coupling issues in addition to reducing the size and pin count of the ICs.

The ICs also feature a very high wideband jitter tolerance (12ns typ) on BCLK and LRCLK to provide robust operation.

Active emissions-limiting, edge-rate limiting, and overshoot control circuitry greatly reduce EMI. A filterless spread-spectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices and reduces the component count of the solution.

The ICs are available in a 9-pin WLP package (1.345mm x 1.435mm x 0.64mm) and are specified over the -40°C to +85°C temperature range.

Applications

Cellular Phones Tablets Portable Media Players Notebook Computers

Ordering Information appears at end of data sheet.

Functional Diagram appears at end of data sheet.

For related parts and recommended products to use with this part, refer to <u>www.maxim-ic.com/MAX98355A.related</u>.

Features

- Single-Supply Operation (2.5V to 5.5V)
- 3.2W Output Power into 4Ω at 5V
- 2.2mA Quiescent Current
- 92% Efficiency (R_L = 8Ω, P_{OUT} = 900mW, V_{DD} = 3.7V)
- ♦ 25µV_{RMS} Output Noise (A_V = 15dB)
- Low 0.013% THD+N at 1kHz
- No MCLK Required
- Sample Rates of 8kHz to 96kHz
- Supports Left, Right, or (Left + Right)/2 Outputs
- Sophisticated Edge Rate Control Enables Filterless Class D Outputs
- ♦ 77dB PSRR at 217Hz
- Low RF Susceptibility Rejects TDMA Noise from GSM Radios
- Extensive Click-and-Pop Reduction Circuitry
- Robust Short-Circuit and Thermal Protection
- Available in Space-Saving Package: 1.345mm x 1.435mm WLP (0.4mm Pitch)

Simplified Block Diagram

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

PCM Input Class D Audio Power Amplifiers

General Description
Applications
Features
Simplified Block Diagram
Absolute Maximum Ratings
Package Thermal Characteristics
Electrical Characteristics
Typical Operating Characteristics
General
Speaker Amplifier
Pin Configuration
Pin Description
Detailed Description
Digital Audio Interface Modes
MCLK Elimination
Jitter Tolerance
BCLK Polarity
LRCLK Polarity
PCM Timing Characteristics
Standby Mode
DAC Digital Filters
SD_MODE and Shutdown Operation
Class D Speaker Amplifier
Ultra-Low EMI Filterless Output Stage
Speaker Current Limit
Gain Selection
Click-and-Pop Suppression
Applications Information
Filterless Class D Operation
Power-Supply Input
Layout and Grounding
WLP Applications Information
Functional Diagram
Ordering Information
Package Information
Revision History

TABLE OF CONTENTS

PCM Input Class D Audio Power Amplifiers

LIST OF FIGURES
- Figure 1. I ² S Audio Interface Timing Diagram (MAX98355A)
Figure 2. Left-Justified Audio Interface Timing Diagram (MAX98355B)
Figure 3. TDM Audio Interface Timing Diagram
Figure 4. MAX98355A I2S Digital Audio Interface Timing, 16-Bit Resolution
Figure 5. MAX98355A I2S Digital Audio Interface Timing, 24-Bit Resolution
Figure 6. MAX98355B Left-Justified Digital Audio Interface Timing, 16-Bit Resolution
Figure 7. MAX98355B Left-Justified Digital Audio Interface Timing, 24-Bit Resolution
Figure 8. MAX98355A TDM Digital Audio Interface Timing 22
Figure 9. MAX98355B TDM Digital Audio Interface Timing
Figure 10. MAX98355A TDM Digital Audio Interface Timing, Example of Four 16-Bit Slots
Figure 11. MAX98355B TDM Digital Audio Interface Timing, Example of Four 16-Bit Slots
Figure 12. SD_MODE Resistor Connection Using Open-Drain Driver
Figure 13. SD_MODE Resistor Connection Using Pullup/Down Driver
Figure 14. EMI with 12in of Speaker Cable and No Output Filtering
Figure 15. Left-Channel PCM Operation with 6dB Gain 29
Figure 16. Left-Channel PCM Operation with 12dB Gain 29
Figure 17. Right-Channel PCM Operation with 6dB Gain 29
Figure 18. Stereo PCM Operation Using Two ICs
Figure 19. (Left + Right)/2 PCM Operation with 6dB Gain 31
Figure 20. MAX98355A/MAX98355B WLP Ball Dimensions

LIST OF TABLES

Table 1. RMS Jitter Tolerance.	17
Table 2. BCLK Polarity	17
Table 3. LRCLK Polarity	17
Table 4. Digital Filter Settings.	26
Table 5. SD_MODE Control	26
Table 6. Examples of SD_MODE Pullup Resistor Values	26
Table 7. Gain Selection.	28

PCM Input Class D Audio Power Amplifiers

ABSOLUTE MAXIMUM RATINGS

V _{DD} , LRCLK, BCLK, and DIN to GND	0.3V to +6V
All Other Pins to GND	0.3V to $(V_{DD} + 0.3V)$
Continuous Current In/Out of VDD/GNI	D/OUT±1.6A
Continuous Input Current (all other pin	s)±20mA
Duration of OUT_ Short Circuit to GND) or V _{DD} Continuous
Duration of OUTP Short to OUTN	Continuous

Continuous Power Dissipation ($T_A = +70^{\circ}C$	2)
WLP (derate 13.7mW/°C above +70°C)	1096mW
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow)	+230°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

WLP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONE	MIN	ТҮР	MAX	UNITS	
Supply Voltage Range	V _{DD}	Guaranteed by PSS	2.5		5.5	V	
Undervoltage Lockout	UVLO			1.5	1.8	2.2	V
Quiescent Current	1	$T_A = +25^{\circ}C$			2.5	3.3	- mA
Quiescent Current	IDD	$T_A = +25^{\circ}C, V_{DD} =$	3.7V		2.2	2.7	
Shutdown Current	ISHDN	$\overline{\text{SD}}_{\text{MODE}} = 0V, T_{\text{A}}$	= +25°C		0.6	2	μA
Standby Current	ISTNDBY	$\overline{\text{SD}}_{\text{MODE}} = 1.8 \text{V}, \text{ r}$	no BCLK, $T_A = +25^{\circ}C$		300	400	μA
Turn-On Time	t _{ON}	Time from receipt of to full operation, inc volume ramp		7	7.5	ms	
Output Offset Voltage	V _{OS}	$T_A = +25^{\circ}C$, gain =	15dB		±0.3	±1.5	mV
	K	Peak voltage, T _A = +25°C, A-weighted,	Into shutdown		-66		
Click-and-Pop Level	K _{CP}	32 samples per second (Note 3)	Out of shutdown		-72		- dBV
		$V_{DD} = 2.5V \text{ to } 5.5V,$	$T_A = +25^{\circ}C$	60	75		
Power-Supply Rejection Ratio	PSRR	T _A = +25°C	f = 217Hz, 200mV _{P-P} ripple		77		dB
		(Notes 3, 4)	f = 10kHz, 200mV _{P-P} ripple		60		

PCM Input Class D Audio Power Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CON	MIN	ТҮР	MAX	UNITS	
			$Z_{\text{SPK}} = 4\Omega + 33\mu\text{H}$		3.2		
		THD+N 10%,	$Z_{\text{SPK}} = 8\Omega + 68\mu\text{H}$		1.8]
		gain = 12dB	$\label{eq:Z_SPK} \begin{split} & Z_{SPK} = 8\Omega + 68 \muH, \\ & V_{DD} = 3.7V \end{split}$		0.93		
Output Power (Note 3)	Pout		$Z_{SPK} = 4\Omega + 33\mu H$		2.5		- W
		THD+N = 1%,	$Z_{\text{SPK}} = 8\Omega + 68\mu\text{H}$		1.4]
		gain = 12dB	$\label{eq:Z_SPK} \begin{split} & Z_{SPK} = 8\Omega + 68 \mu H, \\ & V_{DD} = 3.7 V \end{split}$		0.77		
Total Harmonic Distortion +	THD+N	f = 1kHz, P _{OUT} = 1 Z _{SPK} = 4Ω + 33μH			0.02	0.06	- %
Noise		$f = 1 \text{kHz}, P_{OUT} = 0$ $Z_{SPK} = 8\Omega + 68 \mu \text{H}$			0.013		/0
Dynamic Range	DR	A-weighted, V _{RMS} = 2.54V, 24-	or 32-bit data		99		dB
Dynamic Range, High Gain	DR _{HG}	A-weighted, gain = (clipping), 24- or 32	15dB, V _{RMS} = 4.55V 2-bit data		105		dB
Output Noise	V _N	A-weighted, 24- or	32-bit data (Note 4)		25		μV _{RMS}
Output Noise, High Gain	V _{N_HG}	A-weighted, gain = data (Note 4)		25		μV _{RMS}	
		GAIN = GND throu	14.5	15	15.5		
		GAIN = GND	11.5128.59	12.5	dB		
Gain (Relative to a 2.1dBV Reference Level)	A _V	GAIN = unconnect		9.5			
		$GAIN = V_{DD}$	5.5	6	6.5		
		$GAIN = V_{DD}$ throug	2.5	3	3.5		
Current Limit	ILIM				2.8		A
Efficiency	h	$Z_{\text{SPK}} = 8\Omega + 68\mu\text{H}$ f = 1kHz, gain = 12			92		%
DAC Gain Error					1		%
Frequency Response						+0.2	dB
DAC DIGITAL FILTERS		·	·				
VOICE MODE IIR LOWPASS	FILTER (LRC	LK < 30kHz)					
Deschand Outoff			Ripple limit cutoff				
Passband Cutoff	fplp	-3dB cutoff		0.446 x f _S			- Hz
Stopband Cutoff	f _{SLP}				0.464 x f _S	Hz	
Stopband Attenuation		f > f _{SLP}		75			dB

PCM Input Class D Audio Power Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AUDIO MODE FIR LOWPAS	S FILTER (30k	Hz < LRCLK < 50kHz)				
		Ripple limit cutoff	0.43 x f _S			
Passband Cutoff	f _{PLP}	-3dB cutoff	0.47 x f _S			Hz
		-6.02dB cutoff	0.5 x f _S			
Stopband Cutoff	f _{SLP}				0.58 x f _S	Hz
Stopband Attenuation		f > f _{SLP}	60			dB
AUDIO MODE FIR LOWPAS	S FILTER (LRC	CLK > 50kHz)				
Deschand Outoff	£	Ripple limit cutoff	0.24 x f _S			
Passband Cutoff fPLP	-3dB cutoff	0.31 x f _S			Hz	
Stopband Cutoff	f _{SLP}				0.477 x f _S	Hz
Stopband Attenuation		f < f _{SLP}	60			dB
DIGITAL AUDIO INTERFAC	E					
LRCLK Range 1	f _{S1}		7.6	8	8.4	
LRCLK Range 2	f _{S2}		15.2	16	16.8	kHz
LRCLK Range 3	f _{S3}		30.4	48	50.4	KLIZ
LRCLK Range 4	f _{S4}		83.8	96	100.8	
Resolution		I ² S/left justified mode		16/24/32		Bits
Resolution		TDM mode		16		Dits
BCLK Frequency Range	f _{BCLK}	BCLK must be 32, 48, or 64X of LRCLK	0.2432		6.4512	MHz
BCLK High Time	^t BCLKH		40			ns
BCLK Low Time	^t BCLKL		40			ns
Maximum Low Frequency BCLK and LRCLK Jitter		RMS jitter below 40kHz		0.5		
Maximum High Frequency BCLK and LRCLK Jitter		RMS jitter above 40kHz		12		- ns
Input High Voltage	VIH	Digital audio inputs	1.3			V
Input Low Voltage	VIL	Digital audio inputs			0.6	V

PCM Input Class D Audio Power Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Leakage Current	I _{IH} , I _{IL}	$V_{IN} = 0V, V_{DD} = 5.5V, T_A = +25^{\circ}C$	-1		+1	μA
Input Capacitance	C _{IN}			12		pF
DIN to BCLK Setup Time	t _{SETUP}		10			
LRCLK to BCLK Setup Time	t SYNCSET		10			- ns
DIN to BCLK Hold Time	thold		10			115
LRCLK to BCLK Hold Time	t _{SYNCHOLD}		10			
SD_MODE COMPARATOR TR	IP POINTS					
ВО			0.08	0.16	0.355	
B1		See SD_MODE and shutdown operation for details	0.65	0.77	0.825	V
B2			1.245	1.4	1.5	
SD_MODE Pulldown Resistor	R _{PD}		92	100	108	kΩ
GAIN COMPARATOR TRIP PO	DINTS					
		A _V = 3dB gain	0.65 x V _{DD}		0.85 x V _{DD}	
		A _V = 6dB gain	0.9 x V _{DD}		V_{DD}	
	V _{GAIN}	A _V = 9dB gain	0.4 x V _{DD}		0.6 x V _{DD}	V
		A _V = 12dB gain	0		0.1 x V _{DD}	
		A _V = 15dB gain	0.15 x V _{DD}		0.35 x V _{DD}	

Note 2: 100% production tested at $T_A = +25^{\circ}C$. Specifications over temperature limits are guaranteed by design.

Note 3: Class D amplifier testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R_L = 8\Omega$, $L_L = 68\mu$ H. For $R_L = 4\Omega$, $L_L = 33\mu$ H.

Note 4: Digital silence used for input signal.

PCM Input Class D Audio Power Amplifiers

Figure 1. I²S Audio Interface Timing Diagram (MAX98355A)

Figure 2. Left-Justified Audio Interface Timing Diagram (MAX98355B)

Figure 3. TDM Audio Interface Timing Diagram

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

General

Speaker Amplifier

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB). BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, $Z_{SPK} = \infty$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PCM Input Class D Audio Power Amplifiers

Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{GND} = 0V, GAIN = V_{DD} (+6dB)$. BCLK = 3.072MHz, LRCLK = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, Z_{SPK} = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PCM Input Class D Audio Power Amplifiers

Pin Configuration

TOP VIEV BUMP SIDE D	DOWN N	M AX98355A MAX98355B	1
	+ SD_MODE (A1) DIN (B1) BCLK (C1)	VDD (A2) GAIN (B2) GND (C2)	OUTP (A3) OUTN (B3) LRCLK (C3)
		WLP	

Pin Description

PIN	NAME	FUNCTION				
A1	SD_MODE	Shutdown and Channel Select. Determines left, right, or (left + right)/2 mix and also used for shutdown. See Table 5.				
A2	V _{DD}	Power-Supply Input				
A3	OUTP	Positive Speaker Amplifier Output				
B1	DIN	Digital Input Signal				
		Amplifier	Gain			
		Gain Connections	Gain (dB)			
	B2 GAIN	GND through 100k Ω resistor	15			
B2		GND	12			
		Unconnected	9			
		V _{DD}	6			
		V_{DD} through 100k Ω resistor	3			
B3	OUTN	legative Speaker Amplifier Output				
C1	BCLK	Bit Clock Input Signal. BCLK must be 32, 48, or 64 x LRCLK. Valid frequency range: 256kHz-6.144MHz.				
C2	GND	Ground				
C3	LRCLK	Left/Right Word Clock Input. Valid frequency range: 8k-	Iz–96kHz.			

PCM Input Class D Audio Power Amplifiers

Detailed Description

The MAX98355A/MAX98355B are digital PCM input Class D power amplifiers. The MAX98355A accepts standard I²S data through DIN, BCLK, and LRCLK while the MAX98355B accepts left justified data through the same inputs. Both versions can accept 16-bit TDM data with up to four slots. These devices eliminate the need for an external MCLK signal that is typically required for PCM data transmission.

SD_MODE selects which data word is output by the amplifier and is used to put the IC into shutdown. The GAIN pin offers five gain settings and allows the output of the amplifier to be tuned to the appropriate level.

The output stage features low-quiescent current, comprehensive click-and-pop suppression, and excellent RF immunity. The ICs offer Class AB audio performance with Class D efficiency in a minimal board-space solution. The Class D amplifier features spread-spectrum modulation with edge-rate and overshoot control circuitry that offers significant improvements in switch-mode amplifier radiated emissions. The amplifier features click-and-pop suppression that reduces audible transients on startup and shutdown. The amplifier includes thermal-overload and short-circuit protection.

Digital Audio Interface Modes

The input stage of the digital audio interface is highly flexible, supporting 8kHz–96kHz sampling rates with 16/24/32-bit resolution for I²S/left justified data as well as up to a 4-slot, 16-bit time division multiplexed (TDM) format (only the first two slots can be selected by the ICs). When LRCLK has a 50% duty cycle the data format is determined by the part number selection (MAX98355A/MAX98355B). When a frame sync pulse is used for the LRCLK the data format is automatically configured in TDM mode. The frame sync pulse indicates the beginning of the first time slot.

MCLK Elimination The ICs eliminate the need for the external MCLK signal that is typically used for PCM communication. This reduces EMI and possible board coupling issues in addition to reducing the size and pin-count of the ICs.

Jitter Tolerance

The ICs feature a very high BCLK and LRCLK jitter tolerance of 0.5ns for RMS jitter below 40kHz and 12ns for wideband RMS jitter while maintaining a dynamic range greater than 98dB (Table 1).

BCLK Polarity

When operating in I²S/left justified mode, incoming serial data is always clocked-in on the rising edge of BCLK. In TDM mode, the MAX98355A clocks-in serial data on the rising edge of BCLK while the MAX98355B clocks in serial data on the falling edge of BCLK (Table 2).

LRCLK Polarity

LRCLK specifies whether left-channel data or rightchannel data is currently being read by the digital audio interface. The MAX98355A indicates the left channel word when LRCLK is low, and the MAX98355B indicates the left channel word when LRCLK is high (Table 3).

Table 1. RMS Jitter Tolerance

FREQUENCY	RMS JITTER TOLERANCE (ns)
< 40kHz	0.5
40kHz–BCLK	12

Table 2. BCLK Polarity

MODE	PART NUMBER	BCLK POLARITY
I ² S/left justified	MAX98355A/MAX98355B	Rising edge
TDM	MAX98355A	Rising edge
	MAX98355B	Falling edge

Table 3. LRCLK Polarity

PART NUMBER	LRCLK POLARITY (LEFT CHANNEL)	
MAX98355A	Low	
MAX98355B	High	

PCM Input Class D Audio Power Amplifiers

PCM Timing Characteristics

The MAX98355A follows standard I²S timing by allowing a delay of one BCLK cycle after the LRCLK transition before the beginning of a new data word (Figure 4 and Figure 5). The MAX98355B follows the left justified timing specification by aligning the LRCLK transitions with the beginning of a new data word (Figure 6 and Figure 7).

Figure 8 and Figure 9 show TDM operation, in which a frame-sync pulse is used for LRCLK. In TDM mode, there must be 32, 48, or 64 BCLK cycles per LRCLK. In TDM

mode, the IC only accepts 16-bit formatted data and only the first two TDM slots can be selected. However, if the first 16 bits are selected ($\overline{SD_MODE} = logic-high$), then the bit-depth or number of channels has no effect as long as there are 32, 48, or 64 BCLK cycles per LRCLK. All extra bits in the frame are ignored (Figure 10 and Figure 11). If the second 16 bits are selected ($\overline{SD_MODE} = logic-high$ through R_{SMALL}), then the TDM data must be 16-bit data and cannot include more than 4 channels (64 BCLK cycles). TDM operation is available in both ICs.

I ² S [.] 16-BIT DATA	, 16 BITS/CHANNEL, SD_MODE = LOGIC-HIGH		
10.10 81 811		RIGHT	
LRLCK	LEFT		LEFT
BCLK			
din X	D15\D14\D13\D12\D11\D10\D9\D8\D7\D6\D5\D4\D3\D2\D1		D0 D15 D14
12S: 16-BIT DATA	, 16 BITS/CHANNEL, SD_MODE = PULLUP THROUGH R _{SMALL}	IGNORED	
	-	RIGHT	
LRLCK	LEFT		LEFT
BCLK	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		
din X		X	
	IGNORED		IGNORED
I ² S: 16-BIT DATA	, 16 BITS/CHANNEL, SD_MODE = PULLUP THROUGH R _{LARGE}	RIGHT	
LRLCK	LEFT		LEFT
BCLK			
din X	D15\D14\D13\D12\D11\D10\D9\D8\D7\D6\D5\D4\D3\D2\D1	X D0 XD15 XD14 XD13 XD12 XD11 XD10 X D9 X D8 X D7 X D6 X D5 X D4 X D3 X D2 X D1	D0 D15 D14
	LEFT A	ND RIGHT AVERAGED	

Figure 4. MAX98355A I2S Digital Audio Interface Timing, 16-Bit Resolution

PCM Input Class D Audio Power Amplifiers

Figure 5. MAX98355A I²S Digital Audio Interface Timing, 24-Bit Resolution

PCM Input Class D Audio Power Amplifiers

RIGHT		
IGNORED		
RIGHT		
IGNORED		
RIGHT		
LEFT AND RIGHT AVERAGED		
E		

Figure 6. MAX98355B Left-Justified Digital Audio Interface Timing, 16-Bit Resolution

PCM Input Class D Audio Power Amplifiers

IFT JETTIERE 2441T DATA 28 BIS CHANKEL 30, JOTE - LOCHION 100.4	(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(LETAND RIGHT AVERAGED
--	--	-----------------------

Figure 7. MAX98355B Left-Justified Digital Audio Interface Timing, 24-Bit Resolution

PCM Input Class D Audio Power Amplifiers

TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = LOGIC-HIGH	
R 1 \ R0 \L15\L14\L13\L12\L11\L10\L9\L8\L7\L6\L5\L4\L3\L2\L1\L0\R15\R14\R13\R12\R11\R10\R9\R8\R7\R6\R5\R4\R3	X R2 X R1 X R0 X L15 X L14 X L13 S
IGNORED IGNORED	
TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = PULLUP THROUGH R _{SMALL}	
X R1 X R0 X L15 X L14 X L12 X L11 X L10 X L9 X L8 X L7 X L6 X L5 X L4 X L3 X L2 X L1 X L0 X R15 X R14 X R13 X R12 X R11 X R10 X R9 X R8 X R7 X R6 X R5 X R4 X R3	
IGNORED	IGNORED
TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = PULLUP THROUGH R _{LARGE}	
L15/L14/L13/L12/L11/L10/L9/L8/L7/L6/L5/L4/L3/L2/L1/L0/R15/R14/R13/R12/R11/R10/R9/R8/R7/R6/R5/R4/R3	XR2XR1XR0
LEFT AND RIGHT AVERAGED	

Figure 8. MAX98355A TDM Digital Audio Interface Timing

PCM Input Class D Audio Power Amplifiers

TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = LOGIC-HIGH
IGNORED IGNORED
TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = PULLUP THROUGH R _{SMALL}
IGNORED IGNORED
TDM: 16-BIT DATA, 32-BIT FRAME, SD_MODE = PULLUP THROUGH R _{LARGE}
L15 (L14)L13 (L12)L11)L10 (L9)L8 (L7)L6 /L5 /L4 /L3 /L2 /L1 /L0)R15 /R14 /R13 /R12 /R11 /R10 / R9 / R8 / R7 / R6 / R5 / R4 / R3 / R2 / R1 / R0
LEFT AND RIGHT AVERAGED

Figure 9. MAX98355B TDM Digital Audio Interface Timing

PCM Input Class D Audio Power Amplifiers

BIT FRAME. 3 <u>0.000</u> = LOGC+HGH	BLK TUTETEEASASASASASASASASASASATUTUTUTUTUTUTUTUTUT	IN A RANE. 32_MOLE = FULLY INNONTINAL MARKEL. 32_MOLE = FULLY INNONTINAL MARKEL, 33_MOLE = FULL FULLY INNONTINAL MARKEL, 33_MOLE = FULLY IN E FULLY IN OLI & FULLY IN E FULLY IN E FULLY IN E F	IDE 64-BIL DATA, 64-BIL HAMME, 32., MODE = POLLUP I HAUGH HAME. LIBELK	LET AUD RIGHT AVERAGED IN ORDED
TDM: 64.BIT DATA, 64.BIT FRAME, <u>30_MODE</u> = LOGIC.+HGH	BGLK TITALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	IDM: 64-611 HAME: SJ_MULE = F0 IACUK	IDM: 64-BIL IDAIA, 64-BIL FHAME, SU-MOUE- LRCLK BCLK BCLK A A A A A A A A A A	IGNORED

Figure 10. MAX98355A TDM Digital Audio Interface Timing, Example of Four 16-Bit Slots

PCM Input Class D Audio Power Amplifiers

Figure 11. MAX98355B TDM Digital Audio Interface Timing, Example of Four 16-Bit Slots

PCM Input Class D Audio Power Amplifiers

Standby Mode

If BCLK stops toggling, the ICs automatically enter standby mode. In standby mode, the Class D speaker is turned off and the outputs go into a high-impedance state, ensuring that unwanted current is not transferred to the load during this condition. Standby mode should not be used in place of the shutdown mode, as the shutdown mode provides the lowest power consumption and the best power-on/off click-and-pop performance.

DAC Digital Filters

The DAC features a digital lowpass filter that is automatically configured for voice playback or music playback based on the sample rate that is used. This filter eliminates the effect of aliasing and any other high-frequency noise that might otherwise be present. <u>Table 4</u> shows the digital filter settings that are automatically selected.

SD_MODE and Shutdown Operation

The ICs feature a low-power shutdown mode, drawing less than 0.6μ A (typ) of supply current. During shutdown, all internal blocks are turned off, including setting the output stage to a high-impedance state. Drive SD_MODE low to put the ICs into shutdown.

The state of $\overline{\text{SD}}_{\text{MODE}}$ determines the audio channel that is sent to the amplifier output (Table 5).

Drive $\overline{\text{SD}}$ _MODE high to select the left word of the stereo input data. Drive $\overline{\text{SD}}$ _MODE high through a sufficiently small resistor to select the right word of the stereo input data. Drive $\overline{\text{SD}}$ _MODE high through a sufficiently large resistor to select both the left and right words of the stereo input data ((left + right)/2). R_{LARGE} and R_{SMALL} are determined by the V_{DDIO} voltage (logic voltage from control interface) that is driving $\overline{\text{SD}}$ _MODE according to the following two equations:

$$\begin{split} R_{SMALL} \left(k \Omega \right) &= 98.5 \text{ x } V_{DDIO} \text{ - } 100 \\ R_{LARGE} \left(k \Omega \right) &= 222.2 \text{ x } V_{DDIO} \text{ - } 100 \end{split}$$

LRCLK FREQUENCY	-3dB CUTOFF FREQUENCY	RIPPLE LIMIT CUTOFF FREQUENCY	STOPBAND CUTOFF FREQUENCY	STOPBAND ATTENUATION (dB)
f _{LRCLK} < 30kHz	0.446 x f _{LRCLK}	0.443 x f _{LRCLK}	0.464 x f _{LRCLK}	75
30kHz < f _{LRCLK} < 50kHz	0.47 x f _{LRCLK}	0.43 x f _{LRCLK}	0.58 x f _{LRCLK}	60
f _{LRCLK} > 50kHz	0.31 x f _{LRCLK}	0.24 x f _{LRCLK}	0.477 x f _{LRCLK}	60

Table 4. Digital Filter Settings

Table 5. SD_MODE Control

SD_MODE STATUS		SELECTED CHANNEL
High	$V_{\overline{SD}_{MODE}} > B2 \text{ trip point (1.4V typ)}$	Left
Pullup through R _{SMALL}	B2 trip point (1.4V typ) > V _{SD_MODE} > B1 trip point (0.77V typ)	Right
Pullup through R _{LARGE}	B1 trip point (0.77 typ) > V _{SD_MODE} > B0 trip point (0.16V typ)	(Left + right)/2
Low	B0 trip point (0.16V typ) > V _{SD_MODE}	Shutdown

Table 6. Examples of SD_MODE Pullup Resistor Values

LOGIC VOLTAGE LEVEL (V _{DDIO}) (V)	R_{SMALL} (k Ω , 1% TOLERANCE)	R_{LARGE} (k Ω , 1% TOLERANCE)
1.8	76.8	300
3.3	226	634

PCM Input Class D Audio Power Amplifiers

When the devices are configured in left-channel mode (SD_MODE is directly driven to logic-high by the control interface), take care to avoid violating the Absolute Maximum Ratings limits for SD_MODE. Ensuring that V_DD is always greater than V_DDIO is one way to prevent SD_MODE from violating the Absolute Maximum Ratings limits. If this is not possible in the application (e.g., if V_DD < 3.0V and V_DDIO = 3.3V, then it is necessary to add a small resistance (~2k Ω) in series with SD_MODE to limit the current into the SD_MODE pin. This is not a concern when using the right channel or (left + right)/2 modes.

Figure 12 and Figure 13 show how to connect an external resistor to SD_MODE when using an open-drain driver or a pullup/down driver.

Class D Speaker Amplifier

The filterless Class D amplifier offers much higher efficiency than Class AB amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromagnetic-interference (EMI) regulation standards. Maxim's active emissions-limiting edge-rate control circuitry and spread-spectrum modulation reduces EMI emissions while maintaining up to 92% efficiency.

Figure 12. SD_MODE Resistor Connection Using Open-Drain Driver

Figure 13. SD_MODE Resistor Connection Using Pullup/Down Driver

PCM Input Class D Audio Power Amplifiers

Maxim's spread-spectrum modulation mode flattens wideband spectral components while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The ICs' spread-spectrum modulator randomly varies the switching frequency by ±10kHz around the center frequency (300kHz). Above 10MHz, the wideband spectrum looks like noise for EMI purposes (Figure 14).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (2.8A typ), the IC disables the outputs for approximately 100µs. At the end of the 100µs, the outputs are re-enabled. If the fault condition still exists, the IC continues to disable and re-enable the outputs until the fault condition is removed.

Gain Selection The ICs offer five programmable gain selections through a single gain input (GAIN). Gain is referenced to the

Figure 14. EMI with 12in of Speaker Cable and No Output Filtering

full-scale output of the DAC, which is 2.1dBV (<u>Table 7</u>). Assuming that the desired output swing is not limited by the supply voltage rail, the IC's output level can be calculated based on the digital input signal level and selected amplifier gain according to the following equation:

Output signal level (dBV) = input signal level (dBFS) + 2.1dB + selected amplifier gain (dB)

where 0dBFS is referenced to 0dBV.

Click-and-Pop Suppression

The IC speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the clickand-pop suppression circuitry reduces audible transient sources internal to the device by ramping the input signal from mute to 0dB. When entering shutdown, the differential speaker outputs immediately go into a high-impedance state without creating audible click-and-pop noise.

Table 7. Gain Selection

GAIN	GAIN (dB)
Connect to GND through 100k Ω ±5% resistor	15
Connect to GND	12
Unconnected	9
Connect to V _{DD}	6
Connect to V_{DD} through 100k Ω ±5% resistor	3

PCM Input Class D Audio Power Amplifiers

Applications Information

Figure 15. Left-Channel PCM Operation with 6dB Gain

Figure 16. Left-Channel PCM Operation with 12dB Gain

Figure 17. Right-Channel PCM Operation with 6dB Gain

PCM Input Class D Audio Power Amplifiers

Figure 18. Stereo PCM Operation Using Two ICs

PCM Input Class D Audio Power Amplifiers

Filterless Class D Operation

Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier's output. The filter adds cost, size, and decreases efficiency and THD+N performance. The ICs' filterless modulation scheme does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output.

Because the switching frequency of the ICs is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance > 10 μ H. Typical 8 Ω speakers exhibit series inductances in the 20 μ H to 100 μ H range.

Power-Supply Input

 V_{DD} , which ranges from 2.5V to 5.5V, powers the IC, including the speaker amplifier. Bypass V_{DD} with a $0.1\mu F$ and $10\mu F$ capacitor to GND. Some applications might require only the $10\mu F$ bypass capacitor, making it possible to operate with a single external component. Apply additional bulk capacitance at the ICs if long input traces between V_{DD} and the power source are used.

Figure 19. (Left + Right)/2 PCM Operation with 6dB Gain

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.

Use wide, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increases. At higher current, the resistance of the output traces decreases the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4 Ω load through 100m Ω of total speaker trace, 1.904W is being delivered to the speaker. If power is delivered through 10m Ω of total speaker trace, 1.951W is being delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the ICs.

The ICs are inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: *Wafer-Level Packaging (WLP) and Its Applications*. Figure 20 shows the dimensions of the WLP balls used on the ICs.

Figure 20. MAX98355A/MAX98355B WLP Ball Dimensions

PCM Input Class D Audio Power Amplifiers

Functional Diagram

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	
MAX98355AEWL+	-40°C to +85°C	9 WLP	
MAX98355BEWL+	-40°C to +85°C	9 WLP	

+Denotes a lead(Pb)-free/RoHS-compliant package.

PCM Input Class D Audio Power Amplifiers

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
9 WLP	W91F1+1	<u>21-0459</u>	Refer to Application Note 1891

PCM Input Class D Audio Power Amplifiers

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	5/12	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

Maxim is a registered trademark of Maxim Integrated Products, Inc.