19-5126; Rev 0; 1/10

EVALUATION KIT AVAILABLE

Dual 1.5/3.0/6.0Gbps SAS/SATA Redriver

General Description

Applications

Features

- Single +3.3V Supply Operation
- Low Power-Down Current (350µA typ) for Power-Sensitive Applications
- ♦ Supports SAS I/II/III ≤ 6.0Gbps
- Excellent Return Loss
 Exceeds SAS/SATA Return Loss Mask (Better Than 8dB Up to 3GHz)
- Supports SAS/SATA OOB-Level Signaling Very Fast Entry and Exit Time of 5ns (Max) Programmable SAS/SATA Threshold
- Independent Output-Boost Selection Two Levels: 0dB, 6dB
- On-Chip 50Ω Input/Output Terminations
- ✤ In-Line Signal Traces for Flow-Through Layout
- Space-Saving, 4.0mm x 4.0mm TQFN Package
- ESD Protection on All Pins: ±5.5kV (Human Body Model)

_Ordering Information

	GE PIN-PACKAGE
MAX4952BCTP+ 0°C to +70°	°C 20 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed Pad.

The MAX4952B dual-channel redriver is designed to redrive one full lane of SAS or SATA signals up to 6.0Gbps and operates from a single +3.3V supply. The MAX4952B is designed for commercial SAS or SAS/SATA applications, such as servers.

The MAX4952B features independent output boost and enhances signal integrity at the receiver by re-establishing full output levels. SAS and SATA out-of-band (OOB) signaling are supported using high-speed amplitude detection on the inputs and squelch on the corresponding outputs.

Inputs and outputs are all terminated in 50Ω internally and exhibit excellent return loss.

The MAX4952B is available in a small, 20-pin, 4.0mm x 4.0mm TQFN package with flow-through traces for ease of layout. This device is specified over the 0°C to +70°C operating temperature range.

Servers

Data Storage

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX4952B

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Vcc0.3\	/ to +4.0V
All Other Pins (Note 1)0.3V to (VC	C + 0.3V)
Short-Circuit Output Current DAP, DAM, HBM, HBP	90mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
20-Pin TQFN (derate 25.6mW/°C above +70°C)	.2051mW
Junction-to-Case Thermal Resistance (θ_{JC}) (Note 2)	
20-Pin TQFN	6°C/W

	$J \in (0 J A) (N O L C Z)$
20-Pin TQFN	
Operating Temperature Range	0°C to +70°C
Junction Temperature	+150°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Junction to Ambient Thermal Resistance (Aux) (Note 2)

Note 1: All I/O pins are clamped by internal diodes.

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, C_{CL} = 10nF \text{ coupling capacitor on each output, } R_L = 50\Omega \text{ on each output, } T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ wise noted. Typical values are at V_{CC} = +3.3V and T_A = +25°C.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC PERFORMANCE	·						
Power-Supply Range	Vcc			3.0		3.6	V
Power-Down Current	IPWRDN	EN = GND			0.35	2	mA
	100	BA = BB = V _{CC}			100	130	
Supply Current	Icc	EN = VCC	BA = BB = GND		85	100	mA
Input Impedance, Differential	Z _{RX-DIFF-} DC	DC		85	100	115	Ω
Output Impedance, Differential	Z _{TX-DIFF-} DC	DC		85	100	115	Ω
AC PERFORMANCE		1					
	RL _{RX-DIFF}	0.1GHz < f ≤ 0.3GHz				-18	
		0.3GHz < f ≤ 0.6GHz				-14	
Input Return Loss, Differential		0.6GHz < f ≤ 1.2GHz				-10	dB
(Note 4)		$1.2GHz < f \le 2.4GHz$				-8	
		2.4 GHz < f \leq 3.0 GHz				-8]
		3.0 GHz < f \leq 6.0 GHz				-1	
		0.1GHz < f ≤ 0.3GHz	Z			-6	
		0.3GHz < f ≤ 0.6GHz	2			-5]
Input Return Loss,	RL _{RX-CM}	0.6GHz < f ≤ 1.2GHz				-5	dB
Common Mode (Note 4)		1.2GHz < f ≤ 2.4GHz				-5	
		2.4GHz < f ≤ 3.0GHz				-5	
		3.0GHz < f ≤ 6.0GHz	2			-1	1

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, C_{CL} = 10nF \text{ coupling capacitor on each output, } R_L = 50\Omega \text{ on each output, } T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ wise noted. Typical values are at $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C.$) (Note 3)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	ТҮР	MAX	UNITS
		0.1GHz < f ≤ 0.3GHz				-14	
	RLTX-DIFF	0.3GHz < f ≤ 0.6GHz				-8	dB
Output Return Loss, Differential		0.6GHz < f ≤ 1.2GHz				-8	
(Note 4)		1.2GHz < f ≤ 2.4GHz				-8	
		2.4GHz < f ≤ 3.0GHz				-8	
		3.0GHz < f ≤ 6.0GHz				-1	
		0.1GHz < f ≤ 0.3GHz				-8	
		0.3GHz < f ≤ 0.6GHz				-5	
Output Return Loss,		0.6GHz < f ≤ 1.2GHz				-5	
Common Mode (Note 4)	RLTX-CM	1.2GHz < f ≤ 2.4GHz				-5	dB
		2.4GHz < f ≤ 3.0GHz				-5	
		3.0GHz < f ≤ 6.0GHz				-1	
		SATA 1.5Gbps, 3Gbps	s, 6Gbps, M = GND	225		1600	
Differential Input Signal Range	VRX-DFF-PP	SAS 1.5Gbps, 3Gbps, M = V _{CC}		275		1600	mVP-P
		SAS 6.0Gbps, M = V _{CC}		300		1600	
	Vsq-diff	SATA OOB, M = GND		50		150	
OOB Squelch Threshold		SAS OOB, M = V _{CC}		120		220	mV _{P-P}
Differential Output-Voltage		A = BA = B	BA = BB = GND	450		650	mV _{P-P}
Swing	Vtx-diff-pp	$f = 750MHz$, 1.5GHz $BA = BB = V_{CC}$		900		1300	1 11VP-P
Propagation Delay	tPD				300		ps
Output Rise/Fall Time	ttx-rise- FALL	Figure 1 (Notes 4, 5)		40		40	ps
Deterministic Jitter	ttx-dj-dd	Up to 6.0Gbps (Notes 4, 6)				15	psp-p
Random Jitter	ttx-rj-dd	Up to 6.0Gbps (Notes	4, 6)			1.4	psrms
OOB Output Startup/Shutdown Time	toob	(Note 7)			3	5	ns
Differential Offset Delta	ΔVOOB,DIFF	Difference between OOB and active-mode output offset		-80		+80	mV
Common-Mode Delta	ΔV _{OOB} ,CM	Difference between OOB and active-mode		-50		+50	mV
CONTROL LOGIC							1
Input Logic-Level Low	VIL					0.6	V
Input Logic-Level High	VIH			1.4			V
Input Logic Hysteresis	VHYST				100		mV
Input Pulldown Resistor	RDOWN				70		kΩ
ESD PROTECTION			I				
All Pins		Human Body Model			±5.5		kV

Note 3: All devices are 100% production tested at $T_A = +70^{\circ}$ C. Specifications for all temperature limits are guaranteed by design. **Note 4:** Guaranteed by design.

Note 5: Rise and fall times are measured using 20% and 80% levels.

Note 6: DJ measured using K28.5 pattern; RJ measured using D10.2 pattern.

Note 7: Total time for OOB detection circuit to enable/squelch the output.

Typical Operating Characteristics

 $(V_{CC} = +3.3V, M = GND, T_A = +25^{\circ}C; all eye diagrams measured using K28.5 pattern, unless otherwise noted.)$

4

_Typical Operating Characteristics (continued)

 $(V_{CC} = +3.3V, M = GND, T_A = +25^{\circ}C; all eye diagrams measured using K28.5 pattern, unless otherwise noted.)$

Pin Configuration

_Pin Description

PIN	NAME	FUNCTION
1	HAP	Noninverting Input from Host Channel A. HAP must be capacitively coupled (see note).
2	HAM	Inverting Input from Host Channel A. HAM must be capacitively coupled (see note).
3, 13, 17, 18	GND	Ground
4	HBM	Inverting Output to Host Channel B. HBM must be capacitively coupled (see note).
5	HBP	Noninverting Output to Host Channel B. HBP must be capacitively coupled (see note).
6, 10, 16, 20	Vcc	Power-Supply Input. Bypass V_{CC} to GND with low-ESR 0.01µF and 4.7µF capacitors in parallel as close to the device as possible; recommended for each V_{CC} pin.
7	EN	Enable Input. Drive EN low for low-power standby mode. Drive EN high for normal operation. EN is internally pulled down by a 70k Ω (typ) resistor.
8	BB	Channel B Boost-Enable Input. Drive BB high to enable channel B +6dB output boost. Drive BB low for standard SAS/SATA output level. BB is internally pulled down by a $70k\Omega$ (typ) resistor.
9 BA		Channel A Boost-Enable Input. Drive BA high to enable channel A +6dB output boost. Drive BA low for standard SAS/SATA output level. BA is internally pulled down by a $70k\Omega$ (typ) resistor.
11 DBP		Noninverting Input from Device Channel B. DBP must be capacitively coupled (see note).
12 DBM		Inverting Input from Device Channel B. DBM must be capacitively coupled (see note).
14 DAM		Inverting Output to Device Channel B. DAM must be capacitively coupled (see note).
19 M OOB-Mode Logic Input. M is internally pulled down by		Noninverting Output to Device Channel B. DAP must be capacatively coupled (see note).
		OOB-Mode Logic Input. M is internally pulled down by a 70k Ω (typ) resistor. Drive M low or leave unconnected for SATA OOB threshold. Drive M high for SAS OOB threshold.
_	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane for proper thermal and electrical operation. Not intended as an electrical connection point.

Note: For proper operation, Maxim recommends the use of low-ESR, X7R, 10nF, 0402-sized capacitors for all redriver inputs and outputs.

Figure 1. Circuit for Measuring t_{R/F} for MAX4952B (refer to the SATA specifications for compliance measurement)

Functional Diagram/Truth Table

EN	ВА	вв	CHANNEL A OUTPUT LEVEL	CHANNEL B OUTPUT LEVEL
0	Х	Х	Power-Down	Power-Down
1	0	0	No Boost	No Boost
1	0	1	No Boost	Boost
1	1	0	Boost	No Boost
1	1	1	Boost	Boost

X = Don't care.

М	OOB THRESHOLD		
0	SATA		
1	SAS/SATA		

MAX4952B

Figure 2. Typical Application Circuit

Figure 3. MAX4952B Driving a SAS Cable

Detailed Description

The MAX4952B dual-channel redriver is designed to redrive one full lane of SAS/SATA signals up to 6.0Gbps while operating from a single +3.3V supply.

The MAX4952B features independent output boost and enhances signal integrity at the receiver by re-establishing full output levels. SAS/SATA OOB signaling is supported using high-speed amplitude detection on the inputs and squelch on the corresponding outputs.

Input/Output Terminations

Inputs and outputs are internally 50 Ω terminated to V_{CC} (see the *Functional Diagram/Truth Table*) and must be AC-coupled using low-ESR, X7R, 10nF capacitors to the SAS/SATA controller IC and SAS/SATA device for proper operation.

Enable Input (EN)/Power-Down Mode

The MAX4952B features an active-high enable input, EN, which has an internal pulldown resistor of 70k Ω (typ). When EN is driven low or left unconnected, the MAX4952B enters power-down mode and squelches the output. Drive EN high for normal operation.

SAS/SATA Mode Input (M)

The MAX4952B supports both SAS and SATA OOB levels. When in SAS mode, the OOB threshold is 120mVP-P (min), and when in SATA mode, the OOB threshold is 50mVP-P (min). Signals below the OOB threshold are squelched to prevent unwanted noise from being redriven at the output. Drive M low or leave unconnected to set SATA OOB levels. Drive M high to set SAS OOB levels. See the *Functional Diagram/Truth Table*. M has an internal pulldown resistor of 70k Ω (typ).

Output Boost-Selection Inputs (BA, BB)

The MAX4952B has two digital control logic inputs, BA and BB. BA and BB have internal pulldown resistors of $70k\Omega$ (typ). BA and BB control the boost level of their corresponding redrivers (see the *Functional Diagram/Truth Table*). Drive BA or BB low or leave unconnected for standard SATA output levels. Drive BA or BB high to boost the output or for standard SAS output levels.

Applications Information

Layout

Circuit board layout and design can significantly affect the performance of the MAX4952B. Use good, high-fre-

quency design techniques, including minimizing ground inductance and using controlled-impedance transmission lines on data signals. Place low-ESR 0.01 μ F and 4.7 μ F power-supply bypass capacitors in parallel as close to V_{CC} as possible, or, as recommended, on each V_{CC} pin. Always connect V_{CC} to a power plane. The MAX4952B requires coupling capacitors for all redriver inputs and outputs. Maxim recommends high-quality, low-ESR, X7R, 10nF, 0402-sized capacitors.

Exposed-Pad Package

The exposed-pad, 20-pin TQFN package incorporates features that provide a very low-thermal resistance path for heat removal from the IC. The exposed pad on the MAX4952B must be soldered to the circuit board ground plane for proper thermal and electrical performance. For more information on exposed-pad packages, refer to Application Note 862: *HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages*.

ESD Protection

As with all Maxim devices, ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The MAX4952B is protected against ESD up to ± 5.5 kV (Human Body Model) without damage. The ESD structures withstand ± 5.5 kV in all states (normal operation and powered down). After an ESD event, the MAX4952B continues to function without latchup.

Human Body Model

The MAX4952B is characterized for ±5.5kV ESD protection using the Human Body Model (MIL-STD-883, Method 3015). Figure 4 shows the Human Body Model and Figure 5 shows the current waveform it generates when discharged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a 1.5k Ω resistor.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Always apply GND then V_{CC} before applying signals, especially if the signal is not current limited.

Figure 4. Human Body ESD Test Model

Chip Information

PROCESS: BICMOS

Figure 5. Human Body Current Waveform

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACK	AGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 T	QFN-EP	T2044+2	<u>21-0139</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

 $_$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA $\,$ 94086 408-737-7600 $\,$

© 2010 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.