

Click <u>here</u> to ask an associate for production status of specific part numbers.

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

General Description

The MAX44242 provides a combination of high voltage, low noise, low input bias current in a dual channel and features rail-to-rail at the output.

This dual amplifier operates over a wide supply voltage range from a single 2.7V to 20V supply or split $\pm 1.35V$ to $\pm 10V$ supplies and consumes only 1.2mA quiescent supply current per channel.

The MAX44242 is a unity-gain stable amplifier with a gain-bandwidth product of 10MHz. The device outputs drive up to 200pF load capacitor without any external isolation resistor compensation.

The MAX44242 is available in 8-pin SOT23 and μ MAX[®] packages and is rated for operation over the -40°C to +125°C automotive temperature range.

Applications

- Chemical Sensor Interface
- Photodiode Sensor Interface
- Medical Pulse Oximetry
- Industrial: Process and Control
- Precision Instrumentation

Typical Application Circuit

Benefits and Features

- 2.7V to 20V Single Supply or ±1.35V to ±10V Dual Supplies
- 0.5pA (max) Input Bias Current
- 5nV/√Hz Input Voltage Noise
- 10MHz Bandwidth
- 8V/µs Slew Rate
- Rail-to-Rail Output
- Integrated EMI Filters
- 1.2mA Supply Current per Amplifier

Ordering Information appears at end of data sheet.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

19-6827; Rev 3; 3/21

© 2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2021 Analog Devices, Inc. All rights reserved.

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Absolute Maximum Ratings

Supply Voltage (V _{DD} to V _{SS})	0.3V to +22V
All Other Pins	\dots (V _{SS} - 0.3V) to (V _{DD} + 0.3V)
Short-Circuit Duration to V _{DD} or	V _{SS}
Continuous Input Current (Any F	Pins)±20mA
Differential Input Voltage	±6V
Continuous Power Dissipation (

	(derate 5.1m		ve +70°C)	408.2mW
8-Pin µMAX	(derate 4.5m)	W/°C abov	e +70°C)	362mW

Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

SOT23

 μMAX

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{DD} = 10V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 10k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY							
Supply Voltage Range	V _{DD}	Guaranteed by PSR	R	2.7		20	V
Dewer Sumply Dejection Datio		V _{DD} = 2.7V to 20V,	T _A = +25°C	106	130		
Power-Supply Rejection Ratio	PSRR	V _{CM} = 0V	$-40^{\circ}C \le T_A \le +125^{\circ}C$	100			dB
Quiescent Current Per Amplifier		D = infinity	T _A = +25°C		1.2	1.6	mA
	I _{DD}	R_{LOAD} = infinity	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1.8	- mA
Power-Up Time	t _{ON}	· · · ·			20		μs
DC CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·					
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test		V _{SS} - 0.	05	V _{DD} - 1.5	V
Common Mode Dejection Datio	CMRR	$V_{CM} = V_{SS} - 0.05V$ to $V_{DD} - 1.5V$	T _A = +25°C	94	111		dB
Common-Mode Rejection Ratio			-40°C ≤ T _A ≤ +125°C	90			
Input Offect Veltage	Maa	T _A = +25°C			50	600	
Input Offset Voltage	V _{OS}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				800	μV
Input Offset Voltage Drift (Note 3)	TC V _{OS}				0.25	2.5	µV/⁰C
Input Bias Current (Note 3)	Ι _Β	T _A = +25°C			0.02	0.5	
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$				10	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	>			50	

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Electrical Characteristics (continued)

 $(V_{DD} = 10V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 10k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
		T _A = +25°C			0.04	0.5	
Input Offset Current (Note 3)	I _{OS}	-40°C ≤ T _A ≤ +85°C				10	pА
		$-40^{\circ}C \le T_A \le +125$	o°C			25	
Open Leen Cein	A	250mV ≤ V _{OUT} ≤	T _A = +25°C	134	145		dD
Open Loop Gain	A _{VOL}	V _{DD} - 250mV	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	129			- dB
Input Popietopoo		Differential			50		
Input Resistance	R _{IN}	Common mode			200		GΩ
Output Short-Circuit Current		To $V_{\mbox{\scriptsize DD}}$ or $V_{\mbox{\scriptsize SS}}$	Noncontinuous		95		mA
			$R_{LOAD} = 10k\Omega$ to $V_{DD}/2$			25	- mV
Output Voltage Low	V _{OL}	V _{OUT} - V _{SS}	$R_{LOAD} = 2k\Omega$ to $V_{DD}/2$			85	
Output Voltage High		V _{DD} - V _{OUT}	$R_{LOAD} = 10k\Omega$ to $V_{DD}/2$			37	- mV
	V _{OH}		$R_{LOAD} = 2k\Omega$ to $V_{DD}/2$			135	
AC CHARACTERISTICS				1			
Input Voltage-Noise Density	e _n	f = 1kHz			5		nV/√Hz
Input Voltage Noise		0.1Hz ≤ f ≤ 10Hz			1.6		μV _{P-P}
Input Current-Noise Density	I _N	f = 1kHz			0.3		pA/√Hz
Input Capacitance	C _{IN}				4		pF
Gain-Bandwidth Product	GBW				10		MHz
Phase Margin	PM	C _{LOAD} = 20pF			60		deg
Slew Rate	SR	A _V = 1V/V, V _{OUT} = 2V _{P-P} , 10% to 90%			8		V/µs
Capacitive Loading	C _{LOAD}	No sustained oscillation, $A_V = 1V/V$			200		pF
Total Harmonic Distortion Plus	TUDIN	V _{OUT} = 2VP-P, A _V = +1V/V	f = 1kHz		-124		- dB
Noise	THD+N		f = 20kHz		-100		
EMI Rejection Ratio	EMIRR	V _{RF_PEAK} = 100m ^v	f = 400MHz		35		
			f = 900MHz		40		
			f = 1800MHz		50		
		f = 2400MHz			57		
Settling Time		To 0.01%, V _{OUT} = 2V step, A _V = -1V/V			1		μs

Note 2: All devices are production tested at $T_A = +25^{\circ}C$. Specifications over temperature are guaranteed by design. **Note 3:** Guaranteed by design.

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Typical Operating Characteristics

 $(V_{DD}$ = 10V, V_{SS} = 0V, outputs have R_L = 10k Ω to $V_{DD}/2$. T_A = +25°C, unless otherwise specified.)

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

 $(V_{DD} = 10V, V_{SS} = 0V)$, outputs have R_L = $10k\Omega$ to $V_{DD}/2$. T_A = +25°C, unless otherwise specified.)

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Typical Operating Characteristics (continued)

 $(V_{DD} = 10V, V_{SS} = 0V)$, outputs have R_L = $10k\Omega$ to $V_{DD}/2$. T_A = +25°C, unless otherwise specified.)

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Typical Operating Characteristics (continued)

 $(V_{DD} = 10V, V_{SS} = 0V)$, outputs have R_L = $10k\Omega$ to $V_{DD}/2$. T_A = +25°C, unless otherwise specified.)

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	OUTA	Channel A Output
2	INA-	Channel A Negative Input
3	INA+	Channel A Positive Input
4	V _{SS}	Negative Supply Voltage. Connect V_{SS} to ground if single supply is used.
5	INB+	Channel B Positive Input
6	INB-	Channel B Negative Input
7	OUTB	Channel B Output
8	V _{DD}	Positive Supply Voltage

Detailed Description

Combining high input impedance, low input bias current, wide bandwidth, and fast settling time, the MAX44242 is an ideal amplifier for driving precision analog-to-digital inputs and buffering digital-to-analog converter outputs.

Input Bias Current

The MAX44242 features a high-impedance CMOS input stage and a special ESD structure that allows low input bias current operation at low-input, common-mode voltages. Low input bias current is useful when interfacing with high-ohmic or capacitive sensors and is beneficial for designing transimpedance amplifiers for photodiode sensors. This makes the device ideal for ground-referenced medical and industrial sensor applications.

Integrated EMI Filter

Electromagnetic interference (EMI) noise occurs at higher frequency that results in malfunction or degradation of electrical equipment.

The MAX44242 has an input EMI filter to avoid the output from getting affected by radio frequency interference. The EMI filter, composed of passive devices, presents significant higher impedance to higher frequencies.

High Supply Voltage Range

The device features 1.2mA current consumption per channel and a voltage supply range from either 2.7V to 20V single supply or $\pm 1.35V$ to $\pm 10V$ split supply.

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Typical Application Circuit

High-Impedance Sensor Application

High impedance sources like pH sensor, photodiodes in applications require negligible input leakage currents to the input transimpedance/buffer structure. The MAX44242 benefits with clean and precise signal conditioning due to its input structure.

The device interfaces to both current-output sensors (photodiodes) (Figure 1), and high-impedance voltage sources (piezoelectric sensors). For current output sensors, a transimpedance amplifier is the most noise-efficient method for converting the input signal to a voltage. High-value feedback resistors are commonly chosen to create large gains, while feedback capacitors help stabilize the amplifier by cancelling any poles introduced in the feedback loop by the highly capacitive sensor or cabling. A combination of low-current noise and low-voltage noise is important for these applications. Take care to calibrate out photodiode dark current if DC accuracy is important. The high bandwidth and slew rate also allow AC signal processing in certain medical photodiode sensor applications such as pulse-oximetry. For voltage-output sensors, a noninverting amplifier is typically used to buffer and/or apply a small gain to the input voltage signal. Due to the extremely high impedance of the sensor output, a low input bias current with minimal temperature variation is very important for these applications.

Transimpedance Amplifier

As shown in Figure 2, the noninverting pin is biased at 2V with C2 added to bypass high-frequency noise. This bias voltage to reverse biases the photodiode D1 at 2V which is often enough to minimize the capacitance across the junction. Hence, the reverse current (I_R) produced by the photodiode as light photons are incident on it, a proportional voltage is produced at the output of the amplifier by the given relation:

$$V_{OUT} = I_R \times R1$$

The addition of C1 is to compensate for the instability caused due to the additional capacitance at the input (junction capacitance C_j and input capacitance of the op amp C_{IN}), which results in loss of phase margin. More information about stabilizing the transimpedance amplifier can be found in <u>Application Note 5129</u>: <u>Stabilize Your</u> Transimpedance Amplifier.

Figure 1. High-Impedance Source/Sensor Preamp Application

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX44242AKA+	-40°C to +125°C	8 SOT23	AETK
MAX44242AUA+	-40°C to +125°C	8 µMAX	_

+Denotes lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/13	Initial release	—
1	11/15	Updated Pin Configuration diagram	8
2	4/18	Updated Typical Application Circuit	1
3	3/21	Updated Electrical Characteristics table	3

www.analog.com

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implicationor otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.