LPC1111/12/13/14 # 32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash and 8 kB SRAM Rev. 01 — 16 April 2010 **Product data sheet** # 1. General description The LPC1111/12/13/14 are a ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for 8/16-bit microcontroller applications, offering performance, low power, simple instruction set and memory addressing together with reduced code size compared to existing 8/16-bit architectures. The LPC1111/12/13/14 operate at CPU frequencies of up to 50 MHz. The peripheral complement of the LPC1111/12/13/14 includes up to 32 kB of flash memory, up to 8 kB of data memory, one Fast-mode Plus I²C-bus interface, one RS-485/EIA-485 UART, up to two SPI interfaces with SSP features, four general purpose counter/timers, a 10-bit ADC, and up to 42 general purpose I/O pins. # 2. Features and benefits - System: - ◆ ARM Cortex-M0 processor, running at frequencies of up to 50 MHz. - ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC). - Serial Wire Debug. - System tick timer. - Memory: - 32 kB (LPC1114), 24 kB (LPC1113), 16 kB (LPC1112), or 8 kB (LPC1111) on-chip flash programming memory. - ◆ 8 kB, 4 kB, or 2 kB SRAM. - In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software. - Digital peripherals: - Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors. - ◆ GPIO pins can be used as edge and level sensitive interrupt sources. - High-current output driver (20 mA) on one pin. - ♦ High-current sink drivers (20 mA) on two I²C-bus pins in Fast-mode Plus. - Four general purpose counter/timers with a total of four capture inputs and 13 match outputs. - Programmable WatchDog Timer (WDT). - Analog peripherals: - ◆ 10-bit ADC with input multiplexing among 8 pins. #### Serial interfaces: - ◆ UART with fractional baud rate generation, internal FIFO, and RS-485 support. - Two SPI controllers with SSP features and with FIFO and multi-protocol capabilities (second SPI on LQFP48 and PLCC44 packages only). - ◆ I²C-bus interface supporting full I²C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode. #### Clock generation: - ◆ 12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock. - Crystal oscillator with an operating range of 1 MHz to 25 MHz. - ◆ Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz. - PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator or the internal RC oscillator. - Clock output function with divider that can reflect the system oscillator clock, IRC clock, CPU clock, and the Watchdog clock. #### Power control: - ◆ Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, and Deep power-down modes. - ◆ Three reduced power modes: Sleep, Deep-sleep, and Deep power-down. - ◆ Processor wake-up from Deep-sleep mode via a dedicated start logic using up to 13 of the functional pins. - ◆ Power-On Reset (POR). - Brownout detect with four separate thresholds for interrupt and forced reset. - Unique device serial number for identification. - Single 3.3 V power supply (1.8 V to 3.6 V). - Available as 48-pin LQFP package, 33-pin HVQFN package, and 44-pin PLCC package. # 3. Applications eMetering Lighting Alarm systems White goods # 4. Ordering information Table 1. Ordering information | Type number | Package | Package | | | | | | |------------------|---------|---|---------|--|--|--|--| | | Name | Description | Version | | | | | | LPC1111FHN33/101 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7\times7\times0.85$ mm | n/a | | | | | | LPC1111FHN33/201 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm | n/a | | | | | | LPC1112FHN33/101 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm | n/a | | | | | LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved. 2 of 59 Table 1. Ordering information ...continued | Type number | Package | Package | | | | | | | |--------------------|---------|---|----------|--|--|--|--|--| | | Name | Description | Version | | | | | | | LPC1112FHN33/201 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm | n/a | | | | | | | LPC1113FHN33/201 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7\times7\times0.85$ mm | n/a | | | | | | | LPC1113FHN33/301 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7\times7\times0.85$ mm | n/a | | | | | | | LPC1114FHN33/201 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7\times7\times0.85$ mm | n/a | | | | | | | LPC1114FHN33/301 | HVQFN33 | HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7\times7\times0.85$ mm | n/a | | | | | | | LPC1113FBD48/301 | LQFP48 | LQFP48: plastic low profile quad flat package; 48 leads; body 7 \times 7 \times 1.4 mm | sot313-2 | | | | | | | LPC1114FBD48/301 | LQFP48 | LQFP48: plastic low profile quad flat package; 48 leads; body 7 \times 7 \times 1.4 mm | sot313-2 | | | | | | | LPC1114FA44/301[1] | PLCC44 | PLCC44; plastic leaded chip carrier; 44 leads | sot187-2 | | | | | | ^[1] Sampling Q3 2010. # 4.1 Ordering options Table 2. Ordering options | Type number | Flash | Total | UART | I ² C/ | SPI | ADC | Package | |------------------|---------|-------|--------|-------------------|-----|----------|-----------| | . Jpc Hambon | . 14011 | SRAM | RS-485 | Fast+ | J | channels | . donago | | LPC1111 | | | | | | | | | LPC1111FHN33/101 | 8 kB | 2 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1111FHN33/201 | 8 kB | 4 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1112 | | | | | | | | | LPC1112FHN33/101 | 16 kB | 2 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1112FHN33/201 | 16 kB | 4 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1113 | | | | | | | | | LPC1113FHN33/201 | 24 kB | 4 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1113FHN33/301 | 24 kB | 8 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1113FBD48/301 | 24 kB | 8 kB | 1 | 1 | 2 | 8 | LQFP48 | | LPC1114 | | | | | | | | | LPC1114FHN33/201 | 32 kB | 4 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1114FHN33/301 | 32 kB | 8 kB | 1 | 1 | 1 | 8 | HVQFN33 | | LPC1114FBD48/301 | 32 kB | 8 kB | 1 | 1 | 2 | 8 | LQFP48 | | LPC1114FA44/301 | 32 kB | 8 kB | 1 | 1 | 2 | 8 | PLCC44[1] | ^[1] Sampling Q3 2010. # 5. Block diagram # 6. Pinning information # 6.1 Pinning 7 of 59 # 6.2 Pin description Table 3. LPC1113/14 pin description table (LQFP48 package) | Symbol | Pin | Type | Description | | |-------------------------------|---------------------|--------------------|--|---| | PIO0_0 to PIO0_11 | | I/O | Port 0 — Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. | | | RESET/PIO0_0 | 3[1] | 1 | RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. | | | | | I/O | PIO0_0 — General purpose digital input/output pin. | | | PIO0_1/CLKOUT/
CT32B0_MAT2 | 4 <u>[2]</u> | I/O | PIO0_1 — General purpose digital input/output pin. A LOW level on this pin
during reset starts the ISP command handler. | | | | | 0 | CLKOUT — Clockout pin. | | | | | 0 | CT32B0_MAT2 — Match output 2 for 32-bit timer 0. | | | PIO0_2/SSEL0/ | 10[2] | I/O | PIO0_2 — General purpose digital input/output pin. | | | CT16B0_CAP0 | | 0 | SSEL0 — Slave Select for SPI0. | | | | | ļ | CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. | | | PIO0_3 | 14[2] | I/O | PIO0_3 — General purpose digital input/output pin. | | | PIO0_4/SCL | 15 <mark>[3]</mark> | CL 15 ³ | I/O | PIO0_4 — General purpose digital input/output pin (open-drain). | | | | I/O | SCL — I ² C-bus, open-drain clock input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | | PIO0_5/SDA | 16 <mark>3</mark> | I/O | PIO0_5 — General purpose digital input/output pin (open-drain). | | | | | I/O | SDA — I ² C-bus, open-drain data input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | | PIO0_6/SCK0 | 22 <mark>[2]</mark> | I/O | PIO0_6 — General purpose digital input/output pin. | | | | | I/O | SCK0 — Serial clock for SPI0. | | | PIO0_7/CTS | 23 ^[2] | I/O | PIO0_7 — General purpose digital input/output pin (high-current output driver). | | | | | I | CTS — Clear To Send input for UART. | | | PIO0_8/MISO0/ | 27 <mark>[2]</mark> | I/O | PIO0_8 — General purpose digital input/output pin. | | | CT16B0_MAT0 | | I/O | MISO0 — Master In Slave Out for SPI0. | | | | | 0 | CT16B0_MAT0 — Match output 0 for 16-bit timer 0. | | | PIO0_9/MOSI0/ | 28[2] | I/O | PIO0_9 — General purpose digital input/output pin. | | | CT16B0_MAT1 | | I/O | MOSI0 — Master Out Slave In for SPI0. | | | | | 0 | CT16B0_MAT1 — Match output 1 for
16-bit timer 0. | | | SWCLK/PIO0_10/ | 29 <mark>[2]</mark> | I | SWCLK — Serial wire clock. | | | SCK0/CT16B0_MAT2 | | I/O | PIO0_10 — General purpose digital input/output pin. | | | | | I/O | SCK0 — Serial clock for SPI0. | | | | | 0 | CT16B0_MAT2 — Match output 2 for 16-bit timer 0. | | | R/PIO0_11/ | 32 <mark>[4]</mark> | <u> </u> | R — Reserved. Configure for an alternate function in the IOCONFIG block. | | | AD0/CT32B0_MAT3 | | I/O | PIO0_11 — General purpose digital input/output pin. | | | | | I | AD0 — A/D converter, input 0. | | | | | 0 | CT32B0_MAT3 — Match output 3 for 32-bit timer 0. | | Table 3. LPC1113/14 pin description table (LQFP48 package) ...continued | - | | | | |--------------------|------------------------|------|--| | Symbol | Pin | Туре | Description | | PIO1_0 to PIO1_11 | | I/O | Port 1 — Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. | | R/PIO1_0/ | 33 <mark>[4]</mark> | I | R — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD1/CT32B1_CAP0 | | I/O | PIO1_0 — General purpose digital input/output pin. | | | | I | AD1 — A/D converter, input 1. | | | | I | CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. | | R/PIO1_1/ | 34 <mark>[4]</mark> | 0 | R — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD2/CT32B1_MAT0 | | I/O | PIO1_1 — General purpose digital input/output pin. | | | | I | AD2 — A/D converter, input 2. | | | | 0 | CT32B1_MAT0 — Match output 0 for 32-bit timer 1. | | R/PIO1_2/ | 35 <mark>[4]</mark> | I | R — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD3/CT32B1_MAT1 | | I/O | PIO1_2 — General purpose digital input/output pin. | | | | I | AD3 — A/D converter, input 3. | | | | 0 | CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | SWDIO/PIO1_3/AD4/ | 39 <mark>[4]</mark> | I/O | SWDIO — Serial wire debug input/output. | | CT32B1_MAT2 | | I/O | PIO1_3 — General purpose digital input/output pin. | | | | I | AD4 — A/D converter, input 4. | | | | 0 | CT32B1_MAT2 — Match output 2 for 32-bit timer 1. | | PIO1_4/AD5/ | 40 <mark>[4]</mark> | I/O | PIO1_4 — General purpose digital input/output pin. | | CT32B1_MAT3/WAKEUP | | I | AD5 — A/D converter, input 5. | | | | 0 | CT32B1_MAT3 — Match output 3 for 32-bit timer 1. | | | | I | WAKEUP — Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. | | PIO1_5/RTS/ | 45 <mark>[2]</mark> | I/O | PIO1_5 — General purpose digital input/output pin. | | CT32B0_CAP0 | | 0 | RTS — Request To Send output for UART. | | | | I | CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. | | PIO1_6/RXD/ | 46 <mark>[2]</mark> | I/O | PIO1_6 — General purpose digital input/output pin. | | CT32B0_MAT0 | | I | RXD — Receiver input for UART. | | | | 0 | CT32B0_MAT0 — Match output 0 for 32-bit timer 0. | | PIO1_7/TXD/ | 47 <mark>[2]</mark> | I/O | PIO1_7 — General purpose digital input/output pin. | | CT32B0_MAT1 | | 0 | TXD — Transmitter output for UART. | | | | 0 | CT32B0_MAT1 — Match output 1 for 32-bit timer 0. | | PIO1_8/CT16B1_CAP0 | <u>9^[2]</u> | I/O | PIO1_8 — General purpose digital input/output pin. | | | | I | CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. | | PIO1_9/CT16B1_MAT0 | 17 <mark>[2]</mark> | I/O | PIO1_9 — General purpose digital input/output pin. | | | | 0 | CT16B1_MAT0 — Match output 0 for 16-bit timer 1. | | PIO1_10/AD6/ | 30[4] | I/O | PIO1_10 — General purpose digital input/output pin. | | CT16B1_MAT1 | | I | AD6 — A/D converter, input 6. | | | | 0 | CT16B1_MAT1 — Match output 1 for 16-bit timer 1. | Table 3. LPC1113/14 pin description table (LQFP48 package) ...continued | Symbol | Pin | Type | Description | |-------------------|---------------------|------|--| | PIO1_11/AD7 | 42 <mark>[4]</mark> | I/O | PIO1_11 — General purpose digital input/output pin. | | | | I | AD7 — A/D converter, input 7. | | PIO2_0 to PIO2_11 | | I/O | Port 2 — Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. | | PIO2_0/DTR/SSEL1 | 2[2] | I/O | PIO2_0 — General purpose digital input/output pin. | | | | 0 | DTR — Data Terminal Ready output for UART. | | | | 0 | SSEL1 — Slave Select for SPI1. | | PIO2_1/DSR/SCK1 | 13 <mark>[2]</mark> | I/O | PIO2_1 — General purpose digital input/output pin. | | | | I | DSR — Data Set Ready input for UART. | | | | I/O | SCK1 — Serial clock for SPI1. | | PIO2_2/DCD/MISO1 | 26 ^[2] | I/O | PIO2_2 — General purpose digital input/output pin. | | | | I | DCD — Data Carrier Detect input for UART. | | | | I/O | MISO1 — Master In Slave Out for SPI1. | | PIO2_3/RI/MOSI1 | 38[2] | I/O | PIO2_3 — General purpose digital input/output pin. | | | | I | RI — Ring Indicator input for UART. | | | | I/O | MOSI1 — Master Out Slave In for SPI1. | | PIO2_4 | 19 <mark>[2]</mark> | I/O | PIO2_4 — General purpose digital input/output pin. | | PIO2_5 | 20[2] | I/O | PIO2_5 — General purpose digital input/output pin. | | PIO2_6 | 1 <u>[2]</u> | I/O | PIO2_6 — General purpose digital input/output pin. | | PIO2_7 | 11 <mark>[2]</mark> | I/O | PIO2_7 — General purpose digital input/output pin. | | PIO2_8 | 12 ^[2] | I/O | PIO2_8 — General purpose digital input/output pin. | | PIO2_9 | 24 ^[2] | I/O | PIO2_9 — General purpose digital input/output pin. | | PIO2_10 | 25 <mark>[2]</mark> | I/O | PIO2_10 — General purpose digital input/output pin. | | PIO2_11/SCK0 | 31 <mark>2</mark> | I/O | PIO2_11 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | PIO3_0 to PIO3_5 | | I/O | Port 3 — Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_6 to PIO3_11 are not available. | | PIO3_0/DTR | 36 <mark>[2]</mark> | I/O | PIO3_0 — General purpose digital input/output pin. | | | | 0 | DTR — Data Terminal Ready output for UART. | | PIO3_1/DSR | 37[2] | I/O | PIO3_1 — General purpose digital input/output pin. | | | | I | DSR — Data Set Ready input for UART. | | PIO3_2/DCD | 43 <mark>[2]</mark> | I/O | PIO3_2 — General purpose digital input/output pin. | | | | I | DCD — Data Carrier Detect input for UART. | | PIO3_3/RI | 48[2] | I/O | PIO3_3 — General purpose digital input/output pin. | | | | I | RI — Ring Indicator input for UART. | | PIO3_4 | 18[2] | I/O | PIO3_4 — General purpose digital input/output pin. | | PIO3_5 | 212 | I/O | PIO3_5 — General purpose digital input/output pin. | | V_{DD} | 8; 44 | I | 3.3 V supply voltage to the internal regulator, the external rail, and the ADC Also used as the ADC reference voltage. | Table 3. LPC1113/14 pin description table (LQFP48 package) ...continued | Symbol | Pin | Type | Description | |----------|------------------|------|---| | XTALIN | 6 ^[5] | I | Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. | | XTALOUT | 7 <u>[5]</u> | 0 | Output from the oscillator amplifier. | | V_{SS} | 5; 41 | I | Ground. | - [1] See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. - [2] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). - [3] I²C-bus pads compliant with the I²C-bus specification for I²C standard mode and I²C Fast-mode Plus. - [4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 26). - [5] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating. Table 4. LPC1114 pin description table (PLCC44 package) | Symbol | Pin | Type | Description | |-------------------------------|---------------------|------|--| | PIO0_0 to PIO0_11 | | I/O | Port 0 — Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. | | RESET/PIO0_0 | 7 <u>[1]</u> | I | RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. | | | | I/O | PIO0_0 — General purpose digital input/output pin. | | PIO0_1/CLKOUT/
CT32B0_MAT2 | 8 <u>[2]</u> | I/O | PIO0_1 — General purpose digital input/output pin. A LOW level on this pin
during reset starts the ISP command handler. | | | | 0 | CLKOUT — Clockout pin. | | | | 0 | CT32B0_MAT2 — Match output 2
for 32-bit timer 0. | | PIO0_2/SSEL0/ | 14[2] | I/O | PIO0_2 — General purpose digital input/output pin. | | CT16B0_CAP0 | | 0 | SSEL0 — Slave Select for SPI0. | | | | I | CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. | | PIO0_3 | 18 <mark>2</mark> | I/O | PIO0_3 — General purpose digital input/output pin. | | PIO0_4/SCL | 19 <mark>[3]</mark> | I/O | PIO0_4 — General purpose digital input/output pin (open-drain). | | | | I/O | SCL — I ² C-bus, open-drain clock input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | PIO0_5/SDA | 20[3] | I/O | PIO0_5 — General purpose digital input/output pin (open-drain). | | | | I/O | SDA — I ² C-bus, open-drain data input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | PIO0_6/SCK0 | 26 <mark>[2]</mark> | I/O | PIO0_6 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | PIO0_7/CTS | 27 <mark>2</mark> | I/O | PIO0_7 — General purpose digital input/output pin (high-current output driver). | | | | I | CTS — Clear To Send input for UART. | | PIO0_8/MISO0/ | 31[2] | I/O | PIO0_8 — General purpose digital input/output pin. | | CT16B0_MAT0 | | I/O | MISO0 — Master In Slave Out for SPI0. | | | | 0 | CT16B0_MAT0 — Match output 0 for 16-bit timer 0. | Table 4. LPC1114 pin description table (PLCC44 package) ...continued | <u> </u> | | • | Description | |------------------------------------|---------------------|----------|--| | Symbol Ploo o/MOSIO/ | Pin | Туре | Description | | PIO0_9/MOSI0/
CT16B0_MAT1 | 32 ^[2] | 1/0 | PIO0_9 — General purpose digital input/output pin. | | <u>-</u> - · · | | 1/0 | MOSI0 — Master Out Slave In for SPI0. | | OMOLIV/DIO 2.424 | 00[3] | 0 | CT16B0_MAT1 — Match output 1 for 16-bit timer 0. | | SWCLK/PIO0_10/
SCK0/CT16B0_MAT2 | 33[2] | 1 | SWCLK — Serial wire clock. | | 551.0, 51 10D0_W/ \12 | | I/O | PIO0_10 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | 7/7/02 4:: | 20147 | 0 | CT16B0_MAT2 — Match output 2 for 16-bit timer 0. | | R/PIO0_11/
AD0/CT32B0_MAT3 | 36 ^[4] | 1 | R — Reserved. Configure for an alternate function in the IOCONFIG block. | | ADU/O I SZDU_IVIA I S | | I/O | PIO0_11 — General purpose digital input/output pin. | | | | <u>I</u> | AD0 — A/D converter, input 0. | | | | 0 | CT32B0_MAT3 — Match output 3 for 32-bit timer 0. | | PIO1_0 to PIO1_11 | | I/O | Port 1 — Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. | | R/PIO1_0/ | 37 <u>[4]</u> | 1 | ${\bf R}$ — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD1/CT32B1_CAP0 | | I/O | PIO1_0 — General purpose digital input/output pin. | | | | I | AD1 — A/D converter, input 1. | | | | I | CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. | | R/PIO1_1/ | 38 <mark>[4]</mark> | 0 | ${\bf R}$ — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD2/CT32B1_MAT0 | | I/O | PIO1_1 — General purpose digital input/output pin. | | | | I | AD2 — A/D converter, input 2. | | | | 0 | CT32B1_MAT0 — Match output 0 for 32-bit timer 1. | | R/PIO1_2/ | 39 <mark>[4]</mark> | I | ${\bf R}$ — Reserved. Configure for an alternate function in the IOCONFIG block. | | AD3/CT32B1_MAT1 | | I/O | PIO1_2 — General purpose digital input/output pin. | | | | I | AD3 — A/D converter, input 3. | | | | 0 | CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | SWDIO/PIO1_3/AD4/ | 41 [4] | I/O | SWDIO — Serial wire debug input/output. | | CT32B1_MAT2 | | I/O | PIO1_3 — General purpose digital input/output pin. | | | | 1 | AD4 — A/D converter, input 4. | | | | 0 | CT32B1_MAT2 — Match output 2 for 32-bit timer 1. | | PIO1_4/AD5/ | 42 <mark>[4]</mark> | I/O | PIO1_4 — General purpose digital input/output pin. | | CT32B1_MAT3/WAKEUP | | I | AD5 — A/D converter, input 5. | | | | 0 | CT32B1_MAT3 — Match output 3 for 32-bit timer 1. | | | | I | WAKEUP — Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. | | PIO1_5/RTS/ | 2[2] | I/O | PIO1_5 — General purpose digital input/output pin. | | CT32B0_CAP0 | | 0 | RTS — Request To Send output for UART. | | | | <u> </u> | CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. | | PIO1_6/RXD/ | 3[2] | I/O | PIO1_6 — General purpose digital input/output pin. | | CT32B0_MAT0 | <u> </u> | <u> </u> | RXD — Receiver input for UART. | | | | 0 | CT32B0_MAT0 — Match output 0 for 32-bit timer 0. | | | | J | - Maton Output o for 52-bit time o. | | L DO4444 40 40 44 4 | | A11.1.7 | CAMPEN COMPANY | Table 4. LPC1114 pin description table (PLCC44 package) ...continued | Symbol | Pin | Туре | Description | |--------------------|---------------------|------|---| | PIO1_7/TXD/ | 4 <mark>[2]</mark> | I/O | PIO1_7 — General purpose digital input/output pin. | | CT32B0_MAT1 | | 0 | TXD — Transmitter output for UART. | | | | 0 | CT32B0_MAT1 — Match output 1 for 32-bit timer 0. | | PIO1_8/CT16B1_CAP0 | 13 <mark>2</mark> | I/O | PIO1_8 — General purpose digital input/output pin. | | | | I | CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. | | PIO1_9/CT16B1_MAT0 | 21 <mark>2</mark> | I/O | PIO1_9 — General purpose digital input/output pin. | | | | 0 | CT16B1_MAT0 — Match output 0 for 16-bit timer 1. | | PIO1_10/AD6/ | 34 <mark>[4]</mark> | I/O | PIO1_10 — General purpose digital input/output pin. | | CT16B1_MAT1 | | I | AD6 — A/D converter, input 6. | | | | 0 | CT16B1_MAT1 — Match output 1 for 16-bit timer 1. | | PIO1_11/AD7 | 44 <mark>[4]</mark> | I/O | PIO1_11 — General purpose digital input/output pin. | | | | I | AD7 — A/D converter, input 7. | | PIO2_0 to PIO2_11 | | I/O | Port 2 — Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. | | PIO2_0/DTR/SSEL1 | 6 ^[2] | I/O | PIO2_0 — General purpose digital input/output pin. | | | | 0 | DTR — Data Terminal Ready output for UART. | | | | 0 | SSEL1 — Slave Select for SPI1. | | PIO2_1/DSR/SCK1 | 17 <mark>[2]</mark> | I/O | PIO2_1 — General purpose digital input/output pin. | | | | I | DSR — Data Set Ready input for UART. | | | | I/O | SCK1 — Serial clock for SPI1. | | PIO2_2/DCD/MISO1 | 30[2] | I/O | PIO2_2 — General purpose digital input/output pin. | | | | I | DCD — Data Carrier Detect input for UART. | | | | I/O | MISO1 — Master In Slave Out for SPI1. | | PIO2_3/RI/MOSI1 | 40 <mark>[2]</mark> | I/O | PIO2_3 — General purpose digital input/output pin. | | | | I | RI — Ring Indicator input for UART. | | | | I/O | MOSI1 — Master Out Slave In for SPI1. | | PIO2_4 | 23[2] | I/O | PIO2_4 — General purpose digital input/output pin. | | PIO2_5 | 24[2] | I/O | PIO2_5 — General purpose digital input/output pin. | | PIO2_6 | 5[2] | I/O | PIO2_6 — General purpose digital input/output pin. | | PIO2_7 | 15 <mark>2</mark> | I/O | PIO2_7 — General purpose digital input/output pin. | | PIO2_8 | 16 <mark>2</mark> | I/O | PIO2_8 — General purpose digital input/output pin. | | PIO2_9 | 28[2] | I/O | PIO2_9 — General purpose digital input/output pin. | | PIO2_10 | 29[2] | I/O | PIO2_10 — General purpose digital input/output pin. | | PIO2_11/SCK0 | 35 <mark>[2]</mark> | I/O | PIO2_11 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | PIO3_0 to PIO3_5 | | I/O | Port 3 — Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_0 to PIO3_3 and PIO3_6 to PIO3_11 are not available. | | PIO3_4 | 22[2] | I/O | PIO3_4 — General purpose digital input/output pin. | | PIO3_5 | 25 ^[2] | I/O | PIO3_5 — General purpose digital input/output pin. | Table 4. LPC1114 pin description table (PLCC44 package) ...continued | Symbol | Pin | Туре | Description | |-----------------|--------------------------|------|---| | V_{DD} | 1; 12 | I | 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage. | | XTALIN | 10 ^[5] | I | Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. | | XTALOUT | 11 <u>^[5]</u> | 0 | Output from the oscillator amplifier. | | V _{SS} | 9; 43 | I | Ground. | - [1] See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. - [2] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). - [3] I²C-bus pads compliant with the I²C-bus specification for I²C standard mode and I²C Fast-mode Plus. - [4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 26). - [5] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN
can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating. Table 5. LPC1111/12/13/14 pin description table (HVQFN33 package) | Symbol | Pin | Type | Description | |-------------------------------|-------------------|------|--| | PIO0_0 to PIO0_11 | | I/O | Port 0 — Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. | | RESET/PIO0_0 | 2[1] | I | RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. | | | | I/O | PIO0_0 — General purpose digital input/output pin. | | PIO0_1/CLKOUT/
CT32B0_MAT2 | 3[2] | I/O | PIO0_1 — General purpose digital input/output pin. A LOW level on this pin
during reset starts the ISP command handler. | | | | 0 | CLKOUT — Clock out pin. | | | | 0 | CT32B0_MAT2 — Match output 2 for 32-bit timer 0. | | PIO0_2/SSEL0/ | 8[2] | I/O | PIO0_2 — General purpose digital input/output pin. | | CT16B0_CAP0 | | 0 | SSEL0 — Slave select for SPI0. | | | | I | CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. | | PIO0_3 | 9[2] | I/O | PIO0_3 — General purpose digital input/output pin. | | PIO0_4/SCL | 10 <mark>3</mark> | I/O | PIO0_4 — General purpose digital input/output pin (open-drain). | | | | I/O | SCL — I ² C-bus, open-drain clock input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | PIO0_5/SDA | 11 <mark>3</mark> | I/O | PIO0_5 — General purpose digital input/output pin (open-drain). | | | | I/O | SDA — I ² C-bus, open-drain data input/output. High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register. | | PIO0_6/SCK0 | 15 ^[2] | I/O | PIO0_6 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | PIO0_7/CTS | 16 ^[2] | I/O | PIO0_7 — General purpose digital input/output pin (high-current output driver). | | | | I | CTS — Clear To Send input for UART. | | PIO0_8/MISO0/ | 17 <mark>2</mark> | I/O | PIO0_8 — General purpose digital input/output pin. | | CT16B0_MAT0 | | I/O | MISO0 — Master In Slave Out for SPI0. | | | | 0 | CT16B0_MAT0 — Match output 0 for 16-bit timer 0. | | PIO0_9/MOSI0/ | 18[2] | I/O | PIO0_9 — General purpose digital input/output pin. | | CT16B0_MAT1 | | I/O | MOSI0 — Master Out Slave In for SPI0. | | | | 0 | CT16B0_MAT1 — Match output 1 for 16-bit timer 0. | | SWCLK/PIO0_10/SCK0/ | 19 ^[2] | I | SWCLK — Serial wire clock. | | CT16B0_MAT2 | | I/O | PIO0_10 — General purpose digital input/output pin. | | | | I/O | SCK0 — Serial clock for SPI0. | | | | 0 | CT16B0_MAT2 — Match output 2 for 16-bit timer 0. | | R/PIO0_11/AD0/ | 21 <mark>4</mark> | I | R — Reserved. Configure for an alternate function in the IOCONFIG block | | CT32B0_MAT3 | | I/O | PIO0_11 — General purpose digital input/output pin. | | | | I | AD0 — A/D converter, input 0. | | | | 0 | CT32B0_MAT3 — Match output 3 for 32-bit timer 0. | | PIO1_0 to PIO1_11 | | I/O | Port 1 — Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. | Table 5. LPC1111/12/13/14 pin description table (HVQFN33 package) ...continued | CT32B1_CAP0 R/PIO1_1/AD2/ CT32B1_MAT0 R/PIO1_2/AD3/ CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 | 22 ^[4] 23 ^[4] 24 ^[4] 25 ^[4] | | R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_0 — General purpose digital input/output pin. AD1 — A/D converter, input 1. CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 — General purpose digital input/output pin. AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. SWDIO — Serial wire debug input/output. | |--|---|--------------------------------|---| | R/PIO1_1/AD2/
CT32B1_MAT0
R/PIO1_2/AD3/
CT32B1_MAT1
SWDIO/PIO1_3/AD4/
CT32B1_MAT2 | 24 ^[4]
25 ^[4] | | AD1 — A/D converter, input 1. CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 — General purpose digital input/output pin. AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT0 R/PIO1_2/AD3/ CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 24 ^[4]
25 ^[4] | O | CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 — General purpose digital input/output pin. AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT0 R/PIO1_2/AD3/ CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 24 ^[4]
25 ^[4] | O | R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 — General purpose digital input/output pin. AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT0 R/PIO1_2/AD3/ CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 24 ^[4]
25 ^[4] | I/O I O I I//O I I//O I O I//O | PIO1_1 — General purpose digital input/output pin. AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | R/PIO1_2/AD3/
CT32B1_MAT1
SWDIO/PIO1_3/AD4/
CT32B1_MAT2 | 25 ^[4] | O | AD2 — A/D converter, input 2. CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 25 ^[4] | O I I/O I O I/O | CT32B1_MAT0 — Match output 0 for 32-bit timer 1. R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 25 ^[4] | I | R — Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT1 SWDIO/PIO1_3/AD4/ CT32B1_MAT2 PIO1_4/AD5/ | 25 ^[4] | I/O
I
O
I/O | PIO1_2 — General purpose digital input/output pin. AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | SWDIO/PIO1_3/AD4/
CT32B1_MAT2
PIO1_4/AD5/ | | I
O
I/O | AD3 — A/D converter, input 3. CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT2
PIO1_4/AD5/ | | O
I/O | CT32B1_MAT1 — Match output 1 for 32-bit timer 1. | | CT32B1_MAT2
PIO1_4/AD5/ | | I/O | · | | CT32B1_MAT2
PIO1_4/AD5/ | | | SWDIO — Serial wire debug input/output. | | PIO1_4/AD5/ | 26[4] | I/O | | | _ | 26[4] | | PIO1_3 — General purpose digital input/output pin. | | _ | 26[4] | I | AD4 — A/D converter, input 4. | | _ | 26[4] | 0 | CT32B1_MAT2 — Match output 2 for 32-bit timer 1. | | CT32B1_MAT3/WAKEUP | <u> </u> | I/O | PIO1_4 — General purpose digital input/output pin. | | | | I | AD5 — A/D converter, input 5. | | | | 0 | CT32B1_MAT3 — Match output 3 for 32-bit timer 1. | | | | I | WAKEUP — Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. | | PIO1_5/RTS/ | 30[2] | I/O | PIO1_5 — General purpose digital input/output pin. | | CT32B0_CAP0 | | 0 | RTS — Request To Send output for UART. | | | | 1 | CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. | | _ | 31[2] | I/O | PIO1_6 — General purpose digital input/output pin. |
| CT32B0_MAT0 | | I | RXD — Receiver input for UART. | | | | 0 | CT32B0_MAT0 — Match output 0 for 32-bit timer 0. | | PIO1_7/TXD/ | 32[2] | I/O | PIO1_7 — General purpose digital input/output pin. | | CT32B0_MAT1 | | 0 | TXD — Transmitter output for UART. | | | | 0 | CT32B0_MAT1 — Match output 1 for 32-bit timer 0. | | PIO1_8/CT16B1_CAP0 | 7[2] | I/O | PIO1_8 — General purpose digital input/output pin. | | | | I | CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. | | PIO1_9/CT16B1_MAT0 | 12[2] | I/O | PIO1_9 — General purpose digital input/output pin. | | | | 0 | CT16B1_MAT0 — Match output 0 for 16-bit timer 1. | | PIO1_10/AD6/ | 20[4] | I/O | PIO1_10 — General purpose digital input/output pin. | | CT16B1_MAT1 | | I | AD6 — A/D converter, input 6. | | | | 0 | CT16B1_MAT1 — Match output 1 for 16-bit timer 1. | | PIO1_11/AD7 | 27 <mark>[4]</mark> | I/O | PIO1_11 — General purpose digital input/output pin. | | | <u>تا</u> ۱۷ | | AD7 — A/D converter, input 7. | Table 5. LPC1111/12/13/14 pin description table (HVQFN33 package) ...continued | Symbol | Pin | Туре | Description | |------------------|--------------------|------|---| | PIO2_0 | | I/O | Port 2 — Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. Pins PIO2_1 to PIO2_11 are not available. | | PIO2_0/DTR | 1[2] | I/O | PIO2_0 — General purpose digital input/output pin. | | | | 0 | DTR — Data Terminal Ready output for UART. | | PIO3_0 to PIO3_5 | | I/O | Port 3 — Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_0, PIO3_1, PIO3_3 and PIO3_6 to PIO3_11 are not available. | | PIO3_2 | 28[2] | I/O | PIO3_2 — General purpose digital input/output pin. | | PIO3_4 | 13 <mark>2</mark> | I/O | PIO3_4 — General purpose digital input/output pin. | | PIO3_5 | 14[2] | I/O | PIO3_5 — General purpose digital input/output pin. | | V_{DD} | 6; 29 | I | 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage. | | XTALIN | 4 <u>5</u> | I | Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. | | XTALOUT | 5 <mark>[5]</mark> | 0 | Output from the oscillator amplifier. | | V _{SS} | 33 | - | Thermal pad. Connect to ground. | ^[1] See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. ^{[2] 5} V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). ^[3] I²C-bus pads compliant with the I²C-bus specification for I²C standard mode and I²C Fast-mode Plus. ^{[4] 5} V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled, and the pin is not 5 V tolerant (see Figure 26). ^[5] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating. # 7. Functional description # 7.1 ARM Cortex-M0 processor The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption. # 7.2 On-chip flash program memory The LPC1111/12/13/14 contain 32 kB (LPC1114), 24 kB (LPC1113), 16 kB (LPC1112), or 8 kB (LPC1111) of on-chip flash memory. # 7.3 On-chip SRAM The LPC1111/12/13/14 contain a total of 8 kB, 4 kB, or 2 kB on-chip static RAM memory. # 7.4 Memory map The LPC1111/12/13/14 incorporates several distinct memory regions, shown in the following figures. Figure 5 shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping. The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows simplifying the address decoding for each peripheral. ## 7.5 Nested Vectored Interrupt Controller (NVIC) The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts. #### 7.5.1 Features Controls system exceptions and peripheral interrupts. LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved. - In the LPC1111/12/13/14, the NVIC supports 32 vectored interrupts including up to 13 inputs to the start logic from individual GPIO pins. - Four programmable interrupt priority levels, with hardware priority level masking. - Relocatable vector table. - Software interrupt generation. # 7.5.2 Interrupt sources Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source. Any GPIO pin (total of up to 42 pins) regardless of the selected function, can be programmed to generate an interrupt on a level, or rising edge or falling edge, or both. # 7.6 IOCONFIG block The IOCONFIG block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals. Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined. # 7.7 Fast general purpose parallel I/O Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation. LPC1111/12/13/14 use accelerated GPIO functions: - GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing can be achieved. - Entire port value can be written in one instruction. Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both. #### 7.7.1 Features - Bit level port registers allow a single instruction to set or clear any number of bits in one write operation. - Direction control of individual bits. - All I/O default to inputs with pull-ups enabled after reset. - Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG block for each GPIO pin. #### **7.8 UART** The LPC1111/12/13/14 contains one UART. Support for RS-485/9-bit mode allows both software address detection and automatic address detection using 9-bit mode. The UART includes a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz. #### 7.8.1 Features - Maximum UART data bit rate of 3.125 MBit/s. - 16 Byte Receive and Transmit FIFOs. - Register locations conform to 16C550 industry standard. - Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. - Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values. - FIFO control mechanism that enables software flow control implementation. - Support for RS-485/9-bit mode. - Support for modem control. #### 7.9 SPI serial I/O controller The LPC1111/12/13/14 contain two SPI controllers on the LQFP48/PLCC44 packages and one SPI controller on the HVQFN33 packages (SPI0). Both SPI controllers support SSP features. The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SPI supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data. # 7.9.1 Features - Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode) - Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses - Synchronous serial communication - Master or slave operation - 8-frame FIFOs for both transmit and receive - 4-bit to 16-bit frame # 7.10 I²C-bus serial I/O controller The LPC1111/12/13/14 contain one I²C-bus controller. The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it. #### **7.10.1** Features - The I²C-interface is a standard I²C-bus compliant interface with open-drain pins. The I²C-bus
interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s. - Easy to configure as master, slave, or master/slave. - Programmable clocks allow versatile rate control. - Bidirectional data transfer between masters and slaves. - Multi-master bus (no central master). - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus. - Serial clock synchronization allows devices with different bit rates to communicate via one serial bus. - Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer. - The I²C-bus can be used for test and diagnostic purposes. - The I²C-bus controller supports multiple address recognition and a bus monitor mode. #### 7.11 10-bit ADC The LPC1111/12/13/14 contains one ADC. It is a single 10-bit successive approximation ADC with eight channels. #### **7.11.1 Features** - 10-bit successive approximation ADC. - Input multiplexing among 8 pins. - Power-down mode. - Measurement range 0 V to V_{DD}. - 10-bit conversion time \geq 2.44 μ s. - Burst conversion mode for single or multiple inputs. - Optional conversion on transition of input pin or timer match signal. - Individual result registers for each ADC channel to reduce interrupt overhead. ## 7.12 General purpose external event counter/timers The LPC1111/12/13/14 includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt. ### 7.12.1 Features • A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler. - Counter or timer operation. - One capture channel per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt. - Four match registers per timer that allow: - Continuous operation with optional interrupt generation on match. - Stop timer on match with optional interrupt generation. - Reset timer on match with optional interrupt generation. - Up to four external outputs corresponding to match registers, with the following capabilities: - Set LOW on match. - Set HIGH on match. - Toggle on match. - Do nothing on match. # 7.13 System tick timer The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms). # 7.14 Watchdog timer The purpose of the watchdog is to reset the microcontroller within a selectable time period. #### 7.14.1 Features - · Internally resets chip if not periodically reloaded. - Debug mode. - Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled. - Incorrect/Incomplete feed sequence causes reset/interrupt if enabled. - Flag to indicate watchdog reset. - Programmable 32-bit timer with internal prescaler. - Selectable time period from ($T_{cy(WDCLK)} \times 256 \times 4$) to ($T_{cy(WDCLK)} \times 2^{32} \times 4$) in multiples of $T_{cy(WDCLK)} \times 4$. - The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator (IRC), the Watchdog oscillator, or the main clock. This gives a wide range of potential timing choices of Watchdog operation under different power reduction conditions. It also provides the ability to run the WDT from an entirely internal source that is not dependent on an external crystal and its associated components and wiring for increased reliability. # 7.15 Clocking and power control # 7.15.1 Crystal oscillators The LPC1111/12/13/14 include three independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application. Following reset, the LPC1111/12/13/14 will operate from the Internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency. See Figure 6 for an overview of the LPC1111/12/13/14 clock generation. ### 7.15.1.1 Internal RC oscillator The IRC may be used as the clock source for the WDT, and/or as the clock that drives the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range. Upon power-up or any chip reset, the LPC1111/12/13/14 use the IRC as the clock source. Software may later switch to one of the other available clock sources. ## 7.15.1.2 System oscillator The system oscillator can be used as the clock source for the CPU, with or without using the PLL. The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted to a higher frequency, up to the maximum CPU operating frequency, by the system PLL. ### 7.15.1.3 Watchdog oscillator The watchdog oscillator can be used as a clock source that directly drives the CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and temperature is ± 40 %. # 7.15.2 System PLL The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 μ s. #### 7.15.3 Clock output The LPC1111/12/13/14 features a clock output function that routes the IRC oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin. #### 7.15.4 Wake-up process The LPC1111/12/13/14 begin operation at power-up and when awakened from Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the system oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source. # 7.15.5 Power control The LPC1111/12/13/14 support a variety of power control features. There are three special modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, a register is provided for shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control. #### 7.15.5.1 Sleep mode When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core. In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses. ### 7.15.5.2 Deep-sleep mode In Deep-sleep mode, the chip is in Sleep mode, and in addition analog blocks can be shut down for increased power savings. The user can configure the Deep-sleep mode to a large extent, selecting any of the oscillators, the PLL, BOD, the ADC, and the flash to be shut down or remain powered during Deep-sleep mode. The user can also select which of the oscillators and analog blocks will be powered up after the chip exits from Deep-sleep mode. The GPIO pins (up to 15 pins total) serve as external wake-up pins to a dedicated start logic to wake up the chip from Deep-sleep mode. The timing of the wake-up process from Deep-sleep mode depends on which blocks are selected to be powered down during deep-sleep. For lowest power consumption, the clock source should be switched to IRC before entering Deep-sleep mode, all oscillators and the PLL should be turned off during deep-sleep, and the IRC should be selected as clock source when the chip wakes up from deep-sleep. The IRC can be switched on and off glitch-free and provides a clean clock signal after start-up. If power consumption is not a concern, any of the oscillators and/or the PLL can be left running in Deep-sleep mode to obtain short wake-up times when waking up from deep-sleep. #### 7.15.5.3 Deep power-down mode In Deep power-down mode, power is shut off to the entire chip with the exception of the WAKEUP pin. The LPC1111/12/13/14 can wake up from Deep power-down mode via the WAKEUP pin. #### 7.16 System control #### 7.16.1 Reset Reset has four sources on the LPC1111/12/13/14: the $\overline{\text{RESET}}$ pin, the Watchdog reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The $\overline{\text{RESET}}$ pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the
operating voltage attains a usable level, starts the IRC and initializes the flash controller. When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values. #### 7.16.2 Brownout detection The LPC1111/12/13/14 includes four levels for monitoring the voltage on the V_{DD} pin. If this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. Four additional threshold levels can be selected to cause a forced reset of the chip. ### 7.16.3 Code security (Code Read Protection - CRP) This feature of the LPC1111/12/13/14 allows user to enable different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP. In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For details see the *LPC111x user manual*. There are three levels of Code Read Protection: - CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. - 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands. - 3. Running an application with level CRP3 selected fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_1 pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via the UART. #### **CAUTION** If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device. In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be disabled. For details see the *LPC111x user manual*. # 7.16.4 APB interface The APB peripherals are located on one APB bus. ### 7.16.5 **AHBLite** The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main static RAM, and the Boot ROM. # 7.16.6 External interrupt inputs All GPIO pins can be level or edge sensitive interrupt inputs. # 7.16.7 Memory mapping control The Cortex-M0 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register contained in the NVIC. The vector table may be located anywhere within the bottom 1 GB of Cortex-M0 address space. The vector table must be located on a 128 word (512 byte) boundary. # 7.17 Emulation and debugging Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four breakpoints and two watchpoints is supported. # 8. Limiting values Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------------|---|--|------------------|-------|------| | V_{DD} | supply voltage (core and external rail) | | 1.8 | 3.6 | V | | V _I | input voltage | 5 V tolerant I/O
pins; only valid
when the V _{DD}
supply voltage is
present | 2 -0.5 | +5.5 | V | | I _{DD} | supply current | per supply pin | [3] _ | 100 | mA | | I _{SS} | ground current | per ground pin | [3] _ | 100 | mA | | I _{latch} | I/O latch-up current | $-(0.5V_{DD}) < V_{I} < (1.5V_{DD});$
$T_{i} < 125 ^{\circ}\text{C}$ | - | 100 | mA | | T _{stg} | storage temperature | , | <u>[4]</u> –65 | +150 | °C | | $T_{j(max)}$ | maximum junction temperature | | - | 150 | °C | | P _{tot(pack)} | total power dissipation (per package) | based on package
heat transfer, not
device power
consumption | - | 1.5 | W | | V _{ESD} | electrostatic discharge voltage | human body
model; all pins | <u>[5]</u> –5000 | +5000 | V | - [1] The following applies to the limiting values: - a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. - b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted. - [2] Including voltage on outputs in 3-state mode. - [3] The peak current is limited to 25 times the corresponding maximum current. - [4] Dependent on package type. - [5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 $k\Omega$ series resistor. # 9. Static characteristics Table 7. Static characteristics $T_{amb} = -40$ °C to +85 °C, unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Typ[1] | Max | Unit | |------------------|---|--|------------------|--------------|--------|--------------------|------| | V_{DD} | supply voltage (core and external rail) | | | 1.8 | 3.3 | 3.6 | V | | I_{DD} | supply current | Active mode; code | | | | | | | | | while(1){} | | | | | | | | | executed from flash | | | | | | | | | system clock = 12 MHz | [2][3][4] | - | 3 | - | mA | | | | $V_{DD} = 3.3 \text{ V}$ | <u>[5][6]</u> | | | | | | | | system clock = 50 MHz | [2][3][5] | - | 9 | - | mA | | | | $V_{DD} = 3.3 \text{ V}$ | [6][7] | | | | | | | | Sleep mode; | [2][3][4] | - | 2 | - | mA | | | | system clock = 12 MHz | [5][6] | | | | | | | | $V_{DD} = 3.3 \text{ V}$ | | | | | | | | | Deep-sleep mode;
V _{DD} = 3.3 V | [2][3][8] | - | 6 | - | μА | | | | Deep power-down mode; $V_{DD} = 3.3 \text{ V}$ | [2][9] | - | 220 | - | nA | | Standard po | ort pins, RESET | | | | | | | | I _{IL} | LOW-level input current | V _I = 0 V; on-chip pull-up resistor disabled | | - | 0.5 | 10 | nA | | I _{IH} | HIGH-level input current | V _I = V _{DD} ; on-chip
pull-down resistor
disabled | | - | 0.5 | 10 | nA | | l _{OZ} | OFF-state output current | $V_O = 0 \text{ V}; V_O = V_{DD};$
on-chip pull-up/down
resistors disabled | | - | 0.5 | 10 | nA | | V _I | input voltage | pin configured to provide a digital function | [10][11]
[12] | 0 | - | 5.0 | V | | Vo | output voltage | output active | | 0 | - | V_{DD} | V | | V_{IH} | HIGH-level input voltage | | | $0.7V_{DD}$ | - | - | V | | V _{IL} | LOW-level input voltage | | | - | - | 0.3V _{DD} | V | | V _{hys} | hysteresis voltage | | | - | 0.4 | - | V | | V _{OH} | HIGH-level output voltage | $2.0~V \leq V_{DD} \leq 3.6~V;$ $I_{OH} = -4~mA$ | [13] | $V_{DD}-0.4$ | - | - | V | | | | 1.8 V \leq V _{DD} < 2.0 V;
I _{OH} = -3 mA | [13] | $V_{DD}-0.4$ | - | - | V | | V _{OL} | LOW-level output voltage | $2.0~V \leq V_{DD} \leq 3.6~V; \\ I_{OL} = 4~mA$ | [13] | - | - | 0.4 | V | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V};$
$\text{I}_{OL} = 3 \text{ mA}$ | [13] | - | - | 0.4 | V | Table 7. Static characteristics ...continued $T_{amb} = -40$ °C to +85 °C, unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Typ[1] | Max | Unit | |-----------------|---|--|------------------|--------------|--------|-------------|------| | Іон | HIGH-level output current | $V_{OH} = V_{DD} - 0.4 \text{ V};$
$2.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}$ | [13] | -4 | - | - | mA | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | [13] | -3 | - | - | mA | | OL | LOW-level output | V _{OL} = 0.4 V | [13] | 4 | - | - | mA | | | current | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | [13] | 3 | - | - | mA | | loнs | HIGH-level short-circuit output current | V _{OH} = 0 V | [14] | - | - | -45 | mA | | lous | LOW-level short-circuit output current | $V_{OL} = V_{DD}$ | [14] | - | - | 50 | mA | | I_{pd} | pull-down current | V _I = 5 V | | 10 | 50 | 150 | μΑ | | pu | pull-up current | V _I = 0 V; | | -15 | -50 | -85 | μΑ | | | | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | | -10 | -50 | -85 | μΑ | | | | $V_{DD} < V_I < 5 V$ | | 0 | 0 | 0 | μΑ | | High-drive ou | tput pin (PIO0_7) | | | | | | | | lıL | LOW-level input current | $V_I = 0 V$; on-chip pull-up resistor disabled | | - | 0.5 | 10 | nA | | Ін | HIGH-level input current | V _I = V _{DD} ; on-chip
pull-down resistor
disabled | | - | 0.5 | 10 | nA | | oz | OFF-state output current | V _O = 0 V; V _O = V _{DD} ;
on-chip pull-up/down
resistors disabled | | - | 0.5 | 10 | nA | | VI | input voltage | pin configured to provide a digital function | [10][11]
[12] | 0 | - | 5.0 | V | | Vo | output voltage | output active | | 0 | - | V_{DD} | V | | V _{IH} | HIGH-level input voltage | | | $0.7V_{DD}$ | - | - | V | | V _{IL} | LOW-level input voltage | | | - | - | $0.3V_{DD}$ | V | | V_{hys} | hysteresis voltage | | | 0.4 | - | - | V | | V _{OH} | HIGH-level output voltage | $2.0~V \leq V_{DD} \leq 3.6~V; \\ I_{OH} = -4~mA$ | [13] | $V_{DD}-0.4$ | - | - | V | | | | 1.8 V \leq V _{DD} $<$ 2.0 V;
I _{OH} = -3 mA | [13] |
$V_{DD}-0.4$ | - | - | V | | V _{OL} | LOW-level output voltage | $2.0 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V};$ $\text{I}_{OL} = 4 \text{ mA}$ | [13] | - | - | 0.4 | V | | | C | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V};$ $\text{I}_{OL} = 3 \text{ mA}$ | [13] | - | - | 0.4 | V | | Он | HIGH-level output current | $V_{OH} = V_{DD} - 0.4 \text{ V};$
$V_{DD} \ge 2.5 \text{ V}$ | [13] | 20 | - | - | mA | | OL | LOW-level output | V _{OL} = 0.4 V | [13] | 4 | - | - | mA | | | current | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | [13] | 3 | _ | _ | mA | Table 7. Static characteristics ... continued $T_{amb} = -40$ °C to +85 °C, unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Typ[1] | Max | Unit | |---------------------------|---|--|------|--------------------|-------------|-------------|------| | I _{OHS} | HIGH-level short-circuit output current | $V_{OH} = 0 V$ | [14] | - | - | -45 | mA | | I _{OLS} | LOW-level short-circuit output current | $V_{OL} = V_{DD}$ | [14] | - | - | 50 | mA | | I_{pd} | pull-down current | V _I = 5 V | | 10 | 50 | 150 | μΑ | | I _{pu} | pull-up current | $V_I = 0 V$ | | -15 | -50 | -85 | μΑ | | | | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | | -10 | -50 | -85 | μΑ | | | | $V_{DD} < V_I < 5 V$ | | 0 | 0 | 0 | μΑ | | I ² C-bus pins | (PIO0_4 and PIO0_5) | | | | | | | | V _{IH} | HIGH-level input voltage | | | 0.7V _{DD} | - | - | V | | V _{IL} | LOW-level input voltage | | | - | - | $0.3V_{DD}$ | V | | V_{hys} | hysteresis voltage | | | - | $0.5V_{DD}$ | - | V | | I _{OL} | LOW-level output current | V _{OL} = 0.4 V; I ² C-bus pins
configured as standard
mode pins | [13] | 4 | - | - | mA | | | | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le V_{DD} < 2.0 \text{ V}$ | [13] | 3 | - | - | | | I _{OL} | LOW-level output current | V _{OL} = 0.4 V; I ² C-bus pins
configured as Fast-mode
Plus pins | [13] | 20 | - | - | mA | | | | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le V_{DD} < 2.0 \text{ V}$ | [13] | 16 | - | - | | | I _{LI} | input leakage current | $V_I = V_{DD}$ | [15] | - | 2 | 4 | μΑ | | | | V _I = 5 V | | - | 10 | 22 | μΑ | | Oscillator pir | ıs | | | | | | | | V _{i(xtal)} | crystal input voltage | | | -0.5 | 1.8 | 1.95 | V | | V _{o(xtal)} | crystal output voltage | | | -0.5 | 1.8 | 1.95 | V | - [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. - [2] $T_{amb} = 25 \, ^{\circ}C$. - [3] I_{DD} measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. - [4] IRC enabled; system oscillator disabled; system PLL disabled. - [5] BOD disabled. - [6] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to UART and SPI0/1 disabled in system configuration block. - [7] IRC disabled; system oscillator enabled; system PLL enabled. - [8] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0xFFFF FDFF. - [9] WAKEUP pin pulled HIGH externally. - [10] Including voltage on outputs in 3-state mode. - [11] V_{DD} supply voltage must be present. - [12] 3-state outputs go into 3-state mode in Deep power-down mode. - [13] Accounts for 100 mV voltage drop in all supply lines. - [14] Allowed as long as the current limit does not exceed the maximum current allowed by the device. [15] To V_{SS}. Table 8. ADC static characteristics T_{amb} = -40 °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz, V_{DD} = 2.5 V to 3.6 V. | | | • | | | | | |---------------------|-------------------------------------|------------|--------------|-----|----------|-----------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V_{IA} | analog input voltage | | 0 | - | V_{DD} | V | | C _{ia} | analog input capacitance | | - | - | 1 | pF | | E _D | differential linearity error | | [1][2] _ | - | ± 1 | LSB | | E _{L(adj)} | integral non-linearity | | [3] | - | ± 1.5 | LSB | | Eo | offset error | | <u>[4]</u> - | - | ± 3.5 | LSB | | E _G | gain error | | <u>[5]</u> _ | - | 0.6 | % | | E _T | absolute error | | [6] | - | ± 4 | LSB | | R _{vsi} | voltage source interface resistance | | - | - | 40 | kΩ | | R _i | input resistance | | [7][8] | - | 2.5 | $M\Omega$ | | | | | | | | | - [1] The ADC is monotonic, there are no missing codes. - [2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 7. - [3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 7</u>. - [4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 7. - [5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 7. - [6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 7. - [7] $T_{amb} = 25$ °C; maximum sampling frequency $f_s = 4.5$ MHz and analog input capacitance $C_{ia} = 1$ pF. - [8] Input resistance R_i depends on the sampling frequency fs: $R_i = 1 / (f_s \times C_{ia})$. - (3) Differential linearity error (E_D). - (4) Integral non-linearity $(E_{L(adj)})$. - (5) Center of a step of the actual transfer curve. **ADC** characteristics Fig 7. ## 9.1 BOD static characteristics Table 9. BOD static characteristics[1] $T_{amb} = 25$ °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------|-------------------|-------------------|-----|------|-----|------| | V_{th} | threshold voltage | interrupt level 0 | | | | | | | | assertion | - | 1.65 | - | V | | | | de-assertion | - | 1.80 | - | V | | | | interrupt level 1 | | | | | | | | assertion | - | 2.22 | - | V | | | | de-assertion | - | 2.35 | - | V | | | | interrupt level 2 | | | | | | | | assertion | - | 2.52 | - | V | | | | de-assertion | - | 2.66 | - | V | | | | interrupt level 3 | | | | | | | | assertion | - | 2.80 | - | V | | | | de-assertion | - | 2.90 | - | V | | | | reset level 0 | | | | | | | | assertion | - | 1.46 | - | V | | | | de-assertion | - | 1.63 | - | V | | | | reset level 1 | | | | | | | | assertion | - | 2.06 | - | V | | | | de-assertion | - | 2.15 | - | V | | | | reset level 2 | | | | | | | | assertion | - | 2.35 | - | V | | | | de-assertion | - | 2.43 | - | V | | | | reset level 3 | | | | | | | | assertion | - | 2.63 | - | V | | | | de-assertion | - | 2.71 | - | V | ^[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see *LPC111x user manual.* # 9.2 Power consumption Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions (see *LPC111x user manual*): - Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block. - Configure GPIO pins as outputs using the GPIOnDIR registers. - Write 0 to all GPIOnDATA registers to drive the outputs LOW. Conditions: $T_{amb} = 25$ °C; active mode entered executing code while (1) $\{\}$ from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. - (1) System oscillator and system PLL disabled; IRC enabled. - (2) System oscillator and system PLL enabled; IRC disabled. Fig 8. Active mode: Typical supply current I_{DD} versus supply voltage V_{DD} for different system clock frequencies Conditions: V_{DD} = 3.3 V; active mode entered executing code while (1) $\{\}$ from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. - (1) System oscillator and system PLL disabled; IRC enabled. - (2) System oscillator and system PLL enabled; IRC disabled. Fig 9. Active mode: Typical supply current I_{DD} versus temperature for different system clock frequencies Conditions: $V_{DD} = 3.3 \text{ V}$; sleep mode entered from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. - (1) System oscillator and system PLL disabled; IRC enabled. - (2) System oscillator and system PLL enabled; IRC disabled. Fig 10. Sleep mode: Typical supply current I_{DD}versus temperature for different system clock frequencies (PDSLEEPCFG = 0xFFFF FDFF). Fig 11. Deep-sleep mode: Typical supply current I_{DD} versus temperature for different supply voltages V_{DD} # 9.3 Electrical pin characteristics output current l_{OH}. Fig 14. I^2 C-bus pins (high current sink): Typical LOW-level output current I_{OL} versus LOW-level output voltage V_{OL} I_{OH} # 10. Dynamic characteristics #### 10.1 Flash memory Table 10. Flash characteristics $T_{amb} = -40$ °C to +85 °C, unless otherwise specified. | anno | , | • | | | | | | |-------------------|------------------|--|-----|-------|-----|------|--------| | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | | N_{endu} | endurance | | [1] | 10000 | - | - | cycles | | t _{ret} | retention time | powered | | 10 | - | - | years | | | | unpowered | | 20 | - | - | years | | t _{er} | erase time | sector or multiple
consecutive
sectors | | 95 | 100 | 105 | ms | | t
{prog} | programming time | | [2] | 0.95 | 1 | 1.05 | ms | ^[1] Number of program/erase cycles. #### 10.2 External clock Table 11. Dynamic characteristic: external clock $T{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}; V_{DD} \text{ over specified ranges.}$ | Symbol | Parameter | Conditions | Min | Typ[2] | Max | Unit | |----------------------|----------------------|------------|--------------------------------|--------|------|------| | f_{osc} | oscillator frequency | | 1 | - | 25 | MHz | | T _{cy(clk)} | clock cycle time | | 40 | - | 1000 | ns | | t _{CHCX} | clock HIGH time | | $T_{\text{cy(clk)}}\times 0.4$ | - | - | ns | | t_{CLCX} | clock LOW time | | $T_{\text{cy(clk)}}\times0.4$ | - | - | ns | | t _{CLCH} | clock rise time | | - | - | 5 | ns | | t _{CHCL} | clock fall time | | - | - | 5 | ns | ^[1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. ^[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes. #### 10.3 Internal oscillators Table 12. Dynamic characteristic: internal oscillators $T_{amb} = -40$ °C to +85 °C; 2.7 V \leq V_{DD} \leq 3.6 V.[1] | Symbol | Parameter | Conditions | Min | Typ[2] | Max | Unit | |----------------------|----------------------------------|------------|-------|--------|-------|------| | f _{osc(RC)} | internal RC oscillator frequency | - | 11.88 | 12 | 12.12 | MHz | - [1] Parameters are valid over operating temperature range unless otherwise specified. - [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. Conditions: Frequency values are typical values. 12 MHz \pm 1 % accuracy is guaranteed for 2.7 V \leq V_{DD} \leq 3.6 V and T_{amb} = -40 °C to +85 °C. Variations between parts may cause the IRC to fall outside the 12 MHz \pm 1 % accuracy specification for voltages below 2.7 V. Fig 20. Internal RC oscillator frequency vs. temperature Table 13. Dynamic characteristics: Watchdog oscillator | Symbol | Parameter | Conditions | | Min | Typ[1] | Max | Unit | |------------------|-------------------------------|--|--------|-----|--------|-----|------| | f _{osc} | internal oscillator frequency | DIVSEL = 0x1F, FREQSEL = 0x1 in the WDTOSCCTRL register; | [2][3] | - | 7.8 | - | kHz | | | | DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register | [2][3] | - | 1700 | - | kHz | ^[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages. - [2] The typical frequency spread over processing and temperature (T_{amb} = -40 °C to +85 °C) is \pm 40 %. - [3] See the LPC111x user manual. #### 10.4 I/O pins Table 14. Dynamic characteristic: I/O pins[1] $T_{amb} = -40$ °C to +85 °C; 1.8 V \leq V_{DD} \leq 3.6 V. | anno | | - DD = | | | | | |----------------|-----------|--------------------------------|-----|-----|-----|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | t _r | rise time | pin
configured as
output | 3.0 | - | 5.0 | ns | | t _f | fall time | pin
configured as | 2.5 | - | 5.0 | ns | ^[1] Applies to standard port pins and \overline{RESET} pin. #### 10.5 I2C-bus Table 15. Dynamic characteristic: I²C-bus pins[1] $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C.}$ | Symbol | Parameter | | Conditions | Min | Max | Unit | |---------------------|----------------|--------------|-----------------------------|-----------------------|-----|------| | f _{SCL} | SCL clock | | Standard-mode | 0 | 100 | kHz | | | frequency | | Fast-mode | 0 | 400 | kHz | | | | | Fast-mode Plus | 0 | 1 | MHz | | t _f | fall time | [4][5][6][7] | of both SDA and SCL signals | - | 300 | ns | | | | | Standard-mode | | | | | | | | Fast-mode | $20 + 0.1 \times C_b$ | 300 | ns | | | | | Fast-mode Plus | - | 120 | ns | | t_{LOW} | LOW period of | | Standard-mode | 4.7 | - | μS | | | the SCL clock | | Fast-mode | 1.3 | - | μS | | | | | Fast-mode Plus | 0.5 | - | μS | | t _{HIGH} | HIGH period of | | Standard-mode | 4.0 | - | μS | | | the SCL clock | | Fast-mode | 0.6 | - | μS | | | | | Fast-mode Plus | 0.26 | - | μS | | t _{HD;DAT} | data hold time | [3][4][8] | Standard-mode | 0 | - | μS | | | | | Fast-mode | 0 | - | μS | | | | | Fast-mode Plus | 0 | - | μS | | t _{SU;DAT} | data set-up | [9][10] | Standard-mode | 250 | - | ns | | | time | | Fast-mode | 100 | - | ns | | | | | Fast-mode Plus | 50 | - | ns | ^[1] See the I²C-bus specification *UM10204* for details. ^[2] Parameters are valid over operating temperature range unless otherwise specified. ^[3] thD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge. ^[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. ^[5] $C_b = \text{total capacitance of one bus line in pF.}$ - [6] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f. - [7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing. - [8] The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time (see *UM10204*). This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. - [9] tsu;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge. - [10] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system but the requirement t_{SU;DAT} = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time. #### 10.6 SPI interfaces Table 16. Dynamic characteristics of SPI pins in SPI mode | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |-----------------------|------------------------|---|--------|-----|-----|-----|------| | T _{cy(PCLK)} | PCLK cycle time | | | 20 | - | - | ns | | T _{cy(clk)} | clock cycle time | | [1] | 40 | - | - | ns | | SPI maste | er (in SPI mode) | | | | | | | | t _{DS} | data set-up time | in SPI mode | [2] | 27 | - | - | ns | | | | $2.0~V \leq V_{DD} \leq 3.6~V$ | | | | | | | | | $1.8 \text{ V} \le \text{V}_{DD} < 2.0 \text{ V}$ | | 36 | - | - | ns | | t _{DH} | data hold time | in SPI mode | [2] | 0 | - | - | ns | | $t_{V(Q)}$ | data output valid time | in SPI mode | [2] | - | - | 10 | ns | | t _{h(Q)} | data output hold time | in SPI mode | [2] | 0 | - | - | ns | | SPI slave | (in SPI mode) | | | | | | | | t _{DS} | data set-up time | in SPI mode | [3][4] | 0 | - | - | ns | LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved. Table 16. Dynamic characteristics of SPI pins in SPI mode | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |-------------------|------------------------|-------------|--------|-----------------------------|-----|------------------------------|------| | t_{DH} | data hold time | in SPI mode | [3][4] | $3 \times T_{cy(PCLK)} + 4$ | - | - | ns | | $t_{V(Q)}$ | data output valid time | in SPI mode | [3][4] | - | - | $3 \times T_{cy(PCLK)} + 11$ | ns | | t _{h(Q)} | data output hold time | in SPI mode | [3][4] | - | - | $2 \times T_{cy(PCLK)} + 5$ | ns | - [1] $T_{cy(clk)} = (SSPCLKDIV \times (1 + SCR) \times CPSDVSR) / f_{main}$. The clock cycle time derived from the SPI bit rate $T_{cy(clk)}$ is a function of the main clock frequency f_{main} , the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register), and the SPI CPSDVSR parameter (specified in the SPI clock prescale register). - [2] $T_{amb} = -40 \,^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$. - [3] $T_{cy(clk)} = 12 \times T_{cy(PCLK)}$ - [4] $T_{amb} = 25$ °C; for normal voltage supply range: $V_{DD} = 3.3$ V. 47 of 59 # 11. Application information #### 11.1 ADC usage notes The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in <u>Table 8</u>: - The ADC input trace must be short and as close as possible to the LPC1111/12/13/14 chip. - The ADC input traces must be shielded from fast switching digital signals and noisy power supply lines. - Because the ADC and the digital core share the same power supply, the power supply line must be adequately filtered. - To improve the ADC performance in a very noisy environment, put the device in Sleep mode during the ADC conversion. #### 11.2 XTAL input The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100$ pF. To limit the input voltage to the specified range, choose an
additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV(RMS) is needed. In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (Figure 24), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected. External components and models used in oscillation mode are shown in <u>Figure 25</u> and in <u>Table 17</u> and <u>Table 18</u>. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, C_L and R_S). Capacitance C_P in <u>Figure 25</u> represents the parallel package capacitance and should not be larger than 7 pF. Parameters F_{OSC} , C_L , R_S and C_P are supplied by the crystal manufacturer (see <u>Table 17</u>). Fig 25. Oscillator modes and models: oscillation mode of operation and external crystal model used for C_{X1}/C_{X2} evaluation Table 17. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters) low frequency mode | Fundamental oscillation frequency F _{OSC} | Crystal load capacitance C _L | Maximum crystal series resistance R _S | External load capacitors C _{X1} , C _{X2} | |--|---|--|--| | 1 MHz - 5 MHz | 10 pF | < 300 Ω | 18 pF, 18 pF | | | 20 pF | < 300 Ω | 39 pF, 39 pF | | | 30 pF | < 300 Ω | 57 pF, 57 pF | | 5 MHz - 10 MHz | 10 pF | < 300 Ω | 18 pF, 18 pF | | | 20 pF | < 200 Ω | 39 pF, 39 pF | | | 30 pF | < 100 Ω | 57 pF, 57 pF | | 10 MHz - 15 MHz | 10 pF | < 160 Ω | 18 pF, 18 pF | | | 20 pF | < 60 Ω | 39 pF, 39 pF | | 15 MHz - 20 MHz | 10 pF | < 80 Ω | 18 pF, 18 pF | Table 18. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters) high frequency mode | Fundamental oscillation frequency F _{OSC} | Crystal load capacitance C _L | Maximum crystal series resistance R _S | External load capacitors C _{X1} , C _{X2} | |--|---|--|--| | 15 MHz - 20 MHz | 10 pF | < 180 Ω | 18 pF, 18 pF | | | 20 pF | < 100 Ω | 39 pF, 39 pF | | 20 MHz - 25 MHz | 10 pF | < 160 Ω | 18 pF, 18 pF | | | 20 pF | < 80 Ω | 39 pF, 39 pF | # 11.3 XTAL Printed Circuit Board (PCB) layout guidelines The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of C_{x1} and C_{x2} should be chosen smaller accordingly to the increase in parasitics of the PCB layout. #### 11.4 Standard I/O pad configuration Figure 26 shows the possible pin modes for standard I/O pins with analog input function: - Digital output driver - · Digital input: Pull-up enabled/disabled - Digital input: Pull-down enabled/disabled - Digital input: Repeater mode enabled/disabled - Analog input # 11.5 Reset pad configuration # 12. Package outline #### LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm SOT313-2 | UNIT | A
max. | A ₁ | A ₂ | А3 | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | H _D | HE | L | Lp | ٧ | w | у | Z _D ⁽¹⁾ | Z _E ⁽¹⁾ | θ | |------|-----------|----------------|----------------|------|--------------|--------------|------------------|------------------|-----|----------------|--------------|---|--------------|-----|------|-----|-------------------------------|-------------------------------|----------| | mm | 1.6 | 0.20
0.05 | 1.45
1.35 | 0.25 | 0.27
0.17 | 0.18
0.12 | 7.1
6.9 | 7.1
6.9 | 0.5 | 9.15
8.85 | 9.15
8.85 | 1 | 0.75
0.45 | 0.2 | 0.12 | 0.1 | 0.95
0.55 | 0.95
0.55 | 7°
0° | #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|--------|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT313-2 | 136E05 | MS-026 | | | | 00-01-19
03-02-25 | Fig 28. Package outline SOT313-2 (LQFP48) LPC1111_12_13_14_1 #### PLCC44: plastic leaded chip carrier; 44 leads #### SOT187-2 0.165 1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included. 0.013 | 0.026 | 0.650 | 0.650 | OUTLINE
VERSION | REFERENCES | | | EUROPEAN | IOOUE DATE | | |--------------------|------------|--------|----------|----------|------------|---------------------------------| | | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT187-2 | 112E10 | MS-018 | EDR-7319 | | | 99-12-27
01-11-14 | 0.59 0.685 0.685 0.042 0.59 Fig 29. Package outline PLCC44 LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved. # HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm Fig 30. Package outline (HVQFN33) LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved. # 13. Abbreviations Table 19. Abbreviations | Acronym | Description | |---------|---| | ADC | Analog-to-Digital Converter | | AHB | Advanced High-performance Bus | | AMBA | Advanced Microcontroller Bus Architecture | | APB | Advanced Peripheral Bus | | BOD | BrownOut Detection | | GPIO | General Purpose Input/Output | | PLL | Phase-Locked Loop | | RC | Resistor-Capacitor | | SPI | Serial Peripheral Interface | | SSI | Serial Synchronous Interface | | SSP | Synchronous Serial Port | | TTL | Transistor-Transistor Logic | | UART | Universal Asynchronous Receiver/Transmitter | | | | # 14. Revision history #### Table 20. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |--------------------|--------------|--------------------|---------------|------------| | LPC1111_12_13_14_1 | 20100416 | Product data sheet | | - | ### 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract
or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the LPC1111_12_13_14_1 product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I²C-bus — logo is a trademark of NXP B.V. #### 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com #### 17. Contents | 1 | General description | 1 | 7.16 | System control | 26 | |----------------|--|-----|--------|---|----| | 2 | Features and benefits | | 7.16.1 | Reset | | | | | | 7.16.2 | Brownout detection | | | 3 | Applications | | 7.16.3 | Code security | | | 4 | Ordering information | | | (Code Read Protection - CRP) | 27 | | 4.1 | Ordering options | . 3 | 7.16.4 | APB interface | | | 5 | Block diagram | . 4 | 7.16.5 | AHBLite | | | 6 | Pinning information | . 5 | 7.16.6 | External interrupt inputs | 28 | | 6.1 | Pinning | . 5 | 7.16.7 | Memory mapping control | 28 | | 6.2 | Pin description | | 7.17 | Emulation and debugging | | | 7 | Functional description | 18 | 8 | Limiting values | 29 | | 7.1 | ARM Cortex-M0 processor | 18 | 9 | Static characteristics | 30 | | 7.2 | On-chip flash program memory | | 9.1 | BOD static characteristics | | | 7.3 | On-chip SRAM | | 9.2 | Power consumption | | | 7.4 | Memory map | 18 | 9.3 | Electrical pin characteristics | | | 7.5 | Nested Vectored Interrupt Controller | | 10 | Dynamic characteristics | | | | (NVIC) | 19 | 10.1 | Flash memory | | | 7.5.1 | Features | 19 | 10.2 | External clock | | | 7.5.2 | Interrupt sources | 20 | 10.3 | Internal oscillators | | | 7.6 | IOCONFIG block | 20 | 10.4 | I/O pins | | | 7.7 | Fast general purpose parallel I/O | | 10.5 | I ² C-bus | | | 7.7.1 | Features | | 10.6 | SPI interfaces | | | 7.8 | UART | 20 | 11 | Application information | | | 7.8.1 | Features | | 11.1 | ADC usage notes | | | 7.9 | SPI serial I/O controller | | 11.1 | XTAL input | | | 7.9.1 | Features | | 11.3 | XTAL Printed Circuit Board (PCB) layout | 40 | | 7.10 | I ² C-bus serial I/O controller | | 11.5 | guidelines | 49 | | 7.10.1 | Features | | 11.4 | Standard I/O pad configuration | | | 7.11 | 10-bit ADC | | 11.5 | Reset pad configuration | | | 7.11.1
7.12 | Features | 22 | 12 | Package outline | | | 1.12 | counter/timers | 22 | 13 | Abbreviations | | | 7.12.1 | Features | | | | | | 7.12.1 | System tick timer | | 14 | Revision history | | | 7.14 | Watchdog timer | | 15 | Legal information | | | 7.14.1 | Features | | 15.1 | Data sheet status | | | 7.15 | Clocking and power control | | 15.2 | Definitions | | | 7.15.1 | Crystal oscillators | | 15.3 | Disclaimers | _ | | 7.15.1.1 | | | 15.4 | Trademarks | | | 7.15.1.2 | | | 16 | Contact information | 58 | | 7.15.1.3 | • | | 17 | Contents | 59 | | 7.15.2 | System PLL | 25 | | | | | 7.15.3 | Clock output | | | | | | 7.15.4 | Wake-up process | | | | | | 7.15.5 | Power control | | | | | | 7.15.5.1 | Sleep mode | 26 | | | | | 7.15.5.2 | Proposition 2 Deep-sleep mode | 26 | | | | | 7.15.5.3 | | | | | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2010. All rights reserved.