DUAL LOW SIDE DRIVER - DARLINGTON OUTPUT STAGE - INPUT COMPARATOR WITH WIDE RANGE COMMON MODE OPERATION AND GROUND COMPATIBLE INPUTS - INPUT COMPARATOR HYSTERESIS - SHORT CIRCUIT PROTECTION OF OUTPUT WITH SOA PROTECTION - INTERNAL THERMAL PROTECTION WITH HYSTERESIS - SINGLESUPPLYVOLTAGE FROM 3.5VUPTO 28V #### DESCRIPTION The L9308 is a monolithic interface circuit with differential input comparator and open collector output able to sink current specifically to drive lamps, relays, d.c. motors, electro valves etc. Particular care has been taken to protect the device against destructive failures - short circuit of outputs to V_S, SOA protection, supply overvoltage. A built in thermal shut-down switches off the device when the IC's internal dissipation becomes too high and the chip temperature exceeds the security threshold. The input comparator hysteresis increases the interface's noise immunity allowing the correct use in critical environments as automotive applications. #### **BLOCK DIAGRAM** October 1990 1/7 ## PIN CONNECTION (Top view) ### **ABSOLUTE MAXIMUM RATINGS** | Symbol | F | Value | Unit | | |-----------------------------------|--|-------------------------------|--------------------|----------| | I _{ZS} | Current Into Supply
Clamp Zener Diode | Tamb = 25°C, DC
Pulsed (*) | 30
80 | mA
mA | | Vs | Supply Voltage | | 28 | V(**) | | lo | Output Current | | Internally Limited | | | T _j , T _{stg} | Junction and Storage Tempera | ture | - 55 to +150 | °C | | Ptot | Power Dissipation at Tamb = 85 | 5°C | 650 | mW | ^(*) TON \leq 2.5ms ; repetition time > 30ms. ## **THERMAL DATA** | Symbol | Parameter | Value | Unit | |-----------------------|---|-------|------| | R _{th j-amb} | Thermal Resistance Junction-ambient Max | 100 | °C/W | ^(**) The maximum allowed supply voltage without limiting resistor is limited by the built-in protection zener diode: see Vzs specvalues. If Vs is higher than Vzs a resistor Rs is necessary to limit the zener current Izs. # $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_s = 14.4 \ V; -40 \ ^{\circ}\text{C} \leq T_{amb}, \ \leq 85 \ ^{\circ}\text{C}; \ R_S = 100 \Omega \ unless \ otherwise \ noted)$ | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---------------------------------------|---|---|------|------|----------------------|-------------| | V_{IH} | Hysteresis of the Input Comparater | $V_{IN} = 200 \text{mVpp}$;
f = 1 kHz | 20 | | 80 | mV | | lΒ | Input Bias Current | $V_1^+ = V_1^- = 0$ | | 0.2 | 1.0 | μΑ | | los | Input Offset Current | $V_I^+ = V_I^- = 0$ | | ± 50 | ± 400 | nA | | CMR | Input Common Mode Range | $V_s = 6 - 18V$
$T_{amb} = 25^{\circ}C$ | 0 | | V _{ST} -1.6 | V | | I _{SC} | Output Short Circuit Current for Each Channel (see fig. 4) | $\begin{split} &V_{IN}-V_{IN}>70\text{mV}\\ &V_S=16\text{V}\\ &T_{amb}=25^{\circ}\text{C to }85^{\circ}\text{C}\\ &T_{amb}=-40^{\circ}\text{C to }25^{\circ}\text{C}\\ &V_{OUT 1, \ 2}=6\text{V} \end{split}$ | | | 0.6
0.7
1.2 | A
A
A | | V _{CSAT} | On Status Saturation Voltage | $T_{amb} = -40^{\circ}\text{C} \text{ to } 25^{\circ}\text{C}$ $V_{1}^{-} - V_{1}^{+} > 70\text{mV}$ $I_{OUT 1, 2} = 300\text{mA}$ $T_{amb} = 25^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$ | | 1.0 | 1.5
1.4 | V
V | | l _{OL} | Output Leakage Current | $V_1 - V_1 > 70 \text{mV}$
$V_S = 18 \text{V}$
$V_S = 5 \text{V}$ | | 10 | 300
20 | μΑ
μΑ | | V_{ST} | Supply voltage (pin 6) | | 3.5 | | 18 | V | | I "st.by" | Supply Current | $V_{i}^{+} V_{i}^{-} > 70 \text{mV}$ | | 5 | 8 | mA | | I _{"ON"} | Supply Current | $V_{l}^{-} V_{l}^{+} > 70 \text{mV}$ | | 18 | | mΑ | | Vzs | Voltage Clamp Supply Protection | I _{ZS} = 10mA | 20 | | 27 | V | | I _{Omin} | Minimum Output Current wiyth the Outputs connected Together | V _{CSAT} = 1.5V | 400 | | | mA | | t _r
t _f | Rise Time (see fig. 2)
Fall Time | I _{OUT} = 50mA
T _{amb} = 25°C | | | 2 2 | μs | | t _{don}
t _{doff} | Delay Time on
Delay Time off | I _{OUT} = 50mA
T _{amb} = 25°C | | | 10
10 | μs | Figure 1 : Switching Time Test Circuit. Figure 2: Switching Time Waveforms for Resistive Loads. Figure 3: Typical Application and Test Circuit. $\begin{array}{c} \textbf{Notes:} & \text{a) } R_{S \text{ required only to limit } Izs \text{ whenever } V_S \text{ exceeds } V_{ZS} \text{ voltage value.} \\ & \text{b) } C_1, C_2 \text{ cut high frequency gain during current limiting.} \end{array}$ Figure 4: Typical SOA Characteristic. ## MINIDIP PACKAGE MECHANICAL DATA | DIM. | | mm | | | inch | | |--------|-------|------|-------|-------|-------|-------| | Diffi. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | А | | 3.32 | | | 0.131 | | | a1 | 0.51 | | | 0.020 | | | | В | 1.15 | | 1.65 | 0.045 | | 0.065 | | b | 0.356 | | 0.55 | 0.014 | | 0.022 | | b1 | 0.204 | | 0.304 | 0.008 | | 0.012 | | D | | | 10.92 | | | 0.430 | | Е | 7.95 | | 9.75 | 0.313 | | 0.384 | | е | | 2.54 | | | 0.100 | | | e3 | | 7.62 | | | 0.300 | | | e4 | | 7.62 | | | 0.300 | | | F | | | 6.6 | | | 0.260 | | I | | | 5.08 | | | 0.200 | | L | 3.18 | | 3.81 | 0.125 | | 0.150 | | Z | | | 1.52 | | | 0.060 | Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. © 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore-Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.