RoHS

V

V

mΩ А

°C

# **Smart Power High-Side-Switch** for Industrial Applications

### **Features**

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown with restart
- ESD Protection
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection with external resistor
- CMOS compatible input
- Loss of GND and loss of V<sub>bb</sub> protection
- Very low standby current
- Green Product (RoHS Compliant)

## Application

- All types of resistive, inductive and capacitive loads
- μC compatible power switch for 12 V and 24 V DC industrial applications
- Replaces electromechanical relays and discrete circuits

## General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS<sup>®</sup> technology. Providing embedded protective functions.

### **Product Summary**

| Overvoltage protection | V <sub>bb(AZ)</sub> | 41      |
|------------------------|---------------------|---------|
| Operating voltage      | V <sub>bb(on)</sub> | 5 34    |
| On-state resistance    | R <sub>ON</sub>     | 60      |
| Nominal load current   | I <sub>L(nom)</sub> | 2.6     |
| Operating temperature  | Ta                  | -30+85  |
| ad dump)               |                     | <b></b> |



PG-DSO-8-24



# **Block Diagram**



| Pin | Symbol | Function                                                       |
|-----|--------|----------------------------------------------------------------|
| 1   | GND    | Logic ground                                                   |
| 2   | IN     | Input, activates the power switch in case of logic high signal |
| 3   | OUT    | Output to the load                                             |
| 4   | NC     | not connected                                                  |
| 5   | Vbb    | Positive power supply voltage                                  |
| 6   | Vbb    | Positive power supply voltage                                  |
| 7   | Vbb    | Positive power supply voltage                                  |
| 8   | Vbb    | Positive power supply voltage                                  |

### **Pin configuration**





| Parameter                                                                                    | Symbol              | Value        | Unit |
|----------------------------------------------------------------------------------------------|---------------------|--------------|------|
| Supply voltage                                                                               | V <sub>bb</sub>     | 40           | V    |
| Supply voltage for full short circuit protection                                             | V <sub>bb(SC)</sub> | 36           |      |
| <i>T</i> <sub>j</sub> = -40+150 °C                                                           |                     |              |      |
| Continuous input voltage                                                                     | V <sub>IN</sub>     | -10 +16      |      |
| Load current (Short - circuit current, see page 5)                                           | IL                  | self limited | A    |
| Current through input pin (DC)                                                               | / <sub>IN</sub>     | ± 5          | mA   |
| Junction temperature                                                                         | Tj                  | 150          | °C   |
| Operating temperature                                                                        | Ta                  | -30+85       |      |
| Storage temperature                                                                          | T <sub>stg</sub>    | -40 +105     |      |
| Power dissipation <sup>1)</sup>                                                              | P <sub>tot</sub>    | 1.5          | W    |
| Inductive load switch-off energy dissipation <sup>1)2)</sup>                                 | E <sub>AS</sub>     | 900          | mJ   |
| single pulse, (see page 8)                                                                   |                     |              |      |
| Tj =150 °C, V <sub>bb</sub> = 13.5 V, I <sub>L</sub> = 1.5 A                                 |                     |              |      |
| Load dump protection <sup>2)</sup> $V_{\text{LoadDump}}^{3} = V_{\text{A}} + V_{\text{S}}$   | VLoaddump           |              | V    |
| $R_{\rm I}$ =2 $\Omega$ , $t_{\rm d}$ =400ms, $V_{\rm IN}$ = low or high, $V_{\rm A}$ =13,5V |                     |              |      |
| $R_{\rm L}$ = 9 $\Omega$                                                                     |                     | 63           |      |
| Electrostatic discharge voltage (Human Body Model)                                           | V <sub>ESD</sub>    |              | kV   |
| according to ANSI EOS/ESD - S5.1 - 1993                                                      |                     |              |      |
| ESD STM5.1 - 1998                                                                            |                     |              |      |
| Input pin                                                                                    |                     | ± 1          |      |
| all other pins                                                                               |                     | ± 5          |      |

### **Thermal Characteristics**

| Thermal resistance @ min. footprint                               | R <sub>th(JA)</sub> | - | 95 | -  | K/W |
|-------------------------------------------------------------------|---------------------|---|----|----|-----|
| Thermal resistance @ 6 cm <sup>2</sup> cooling area <sup>1)</sup> | R <sub>th(JA)</sub> | - | 70 | 83 |     |

 $<sup>^{1}\</sup>text{Device}$  on  $50\text{mm}^{*}50\text{mm}^{*}1.5\text{mm}$  epoxy PCB FR4 with 6 cm2 (one layer,  $70\mu\text{m}$  thick) copper area for drain

connection. PCB is vertical without blown air. (see page 16)

<sup>&</sup>lt;sup>2</sup>not subject to production test, specified by design

 $<sup>^{3}\</sup>textit{V}_{Loaddump}$  is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .

Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a

 $<sup>150\</sup>Omega$  resistor in GND connection. A resistor for the protection of the input is integrated.



### **Electrical Characteristics**

| Parameter and Conditions                                           | Symbol                | Values |      | Unit |      |
|--------------------------------------------------------------------|-----------------------|--------|------|------|------|
| at $T_j$ = -40+150°C, $V_{bb}$ = 13,5V, unless otherwise specified |                       | min.   | typ. | max. |      |
| Load Switching Capabilities and Characterist                       | ics                   |        |      |      |      |
| On-state resistance                                                | R <sub>ON</sub>       |        |      |      | mΩ   |
| $T_{\rm j}$ = 25 °C, $I_{\rm L}$ = 2 A, $V_{\rm bb}$ = 940 V       |                       | -      | 50   | 60   |      |
| <i>T</i> <sub>j</sub> = 150 °C                                     |                       | -      | 95   | 120  |      |
| Nominal load current; Device on PCB <sup>1)</sup>                  | I <sub>L(nom)</sub>   | 2.6    | 3.1  | -    | А    |
| $T_{\rm C}$ = 85 °C, $T_{\rm j} \le$ 150 °C                        |                       |        |      |      |      |
| Turn-on time to 90% V <sub>OUT</sub>                               | t <sub>on</sub>       | -      | 90   | 180  | μs   |
| $R_{\rm L}$ = 47 $\Omega$                                          |                       |        |      |      |      |
| Turn-off time to 10% V <sub>OUT</sub>                              | t <sub>off</sub>      | -      | 110  | 230  |      |
| $R_{L}$ = 47 $\Omega$                                              |                       |        |      |      |      |
| Slew rate on 10 to 30% V <sub>OUT</sub> ,                          | dV/dt <sub>on</sub>   | -      | 0.7  | 1.5  | V/µs |
| $R_{L} = 47 \ \Omega$                                              |                       |        |      |      |      |
| Slew rate off 70 to 40% V <sub>OUT</sub> ,                         | -dV/dt <sub>off</sub> | -      | 0.7  | 1.5  | ]    |
| $R_{L} = 47 \ \Omega$                                              |                       |        |      |      |      |

### **Operating Parameters**

| Operating voltage                                                       | V <sub>bb(on)</sub>    | 5 | -   | 34  | V  |
|-------------------------------------------------------------------------|------------------------|---|-----|-----|----|
| Undervoltage shutdown of charge pump                                    | V <sub>bb(under)</sub> |   |     |     | 1  |
| $T_{\rm i} = -40+85 \ ^{\circ}{\rm C}$                                  |                        | - | -   | 4   |    |
| $T_{j} = 150 \ ^{\circ}C$                                               |                        | - | -   | 5.5 |    |
| Undervoltage restart of charge pump                                     | V <sub>bb(u cp)</sub>  | - | 4   | 5.5 | 1  |
| Standby current                                                         | I <sub>bb(off)</sub>   |   |     |     | μA |
| <i>T</i> <sub>j</sub> = -40+85 °C, <i>V</i> <sub>IN</sub> = 0 V         |                        | - | -   | 10  |    |
| $T_{\rm j} = 150 \ {}^{\circ}{\rm C}^{2}$ ), $V_{\rm IN} = 0 \ {\rm V}$ |                        | - | -   | 15  |    |
| Leakage output current (included in <i>I</i> <sub>bb(off)</sub> )       | I <sub>L(off)</sub>    | - | -   | 5   |    |
| $V_{\rm IN} = 0 V$                                                      |                        |   |     |     |    |
| Operating current                                                       | I <sub>GND</sub>       | - | 0.8 | 1.5 | mA |
| $V_{\rm IN} = 5 V$                                                      |                        |   |     |     |    |

<sup>&</sup>lt;sup>1</sup>Device on 50mm\*50mm\*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16)

<sup>&</sup>lt;sup>2</sup>higher current due temperature sensor



### ISP772T

### **Electrical Characteristics**

| Parameter and Conditions                                                                      | Symbol              | Values |      | Unit |    |
|-----------------------------------------------------------------------------------------------|---------------------|--------|------|------|----|
| at $T_j$ = -40+150°C, $V_{bb}$ = 13,5V, unless otherwise specified                            |                     | min.   | typ. | max. |    |
| Protection Functions <sup>1)</sup>                                                            |                     |        |      |      |    |
| Initial peak short circuit current limit (pin 5 to 3)                                         | I <sub>L(SCp)</sub> |        |      |      | A  |
| <i>T</i> <sub>j</sub> = -40 °C, <i>V</i> <sub>bb</sub> = 20 V, <i>t</i> <sub>m</sub> = 150 μs |                     | -      | -    | 28   |    |
| $T_{\rm j} = 25 \ ^{\circ}{\rm C}$                                                            |                     | -      | 17   | -    |    |
| <i>T</i> <sub>j</sub> = 150 °C                                                                |                     | 9      | -    | -    |    |
| Repetitive short circuit current limit                                                        | I <sub>L(SCr)</sub> |        |      |      |    |
| T <sub>j</sub> = T <sub>jt</sub> (see timing diagrams)                                        |                     | -      | 12   | -    |    |
| Output clamp (inductive load switch off)                                                      | V <sub>ON(CL)</sub> | 41     | 47   | -    | V  |
| at $V_{OUT} = V_{bb} - V_{ON(CL)}$ ,                                                          |                     |        |      |      |    |
| $I_{\rm bb} = 4  \mathrm{mA}$                                                                 |                     |        |      |      |    |
| Overvoltage protection <sup>2)</sup>                                                          | V <sub>bb(AZ)</sub> | 41     | -    | -    |    |
| $I_{\rm bb} = 4  \mathrm{mA}$                                                                 | . ,                 |        |      |      |    |
| Thermal overload trip temperature                                                             | T <sub>jt</sub>     | 150    | -    | -    | °C |
| Thermal hysteresis                                                                            | $\Delta T_{jt}$     | -      | 10   | -    | К  |

### **Reverse Battery**

| Reverse battery <sup>3)</sup>                     | -V <sub>bb</sub> | - | -   | 32 | V  |
|---------------------------------------------------|------------------|---|-----|----|----|
| Drain-source diode voltage ( $V_{OUT} > V_{bb}$ ) | -V <sub>ON</sub> | - | 600 | -  | mV |
| <i>T</i> <sub>j</sub> = 150 °C                    |                  |   |     |    |    |

<sup>1</sup>Integrated protection functions are designed to prevent IC destruction under fault conditions

described in the data sheet. Fault conditions are considered as "outside" normal operating range.

Protection functions are not designed for continuous repetitive operation.

 $^2$  see also V<sub>ON(CL)</sub> in circuit diagram on page 7

<sup>3</sup>Requires a 150  $\Omega$  resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).



### **Electrical Characteristics**

| Parameter and Conditions                                           | Symbol                 | Values |      | Unit |    |
|--------------------------------------------------------------------|------------------------|--------|------|------|----|
| at $T_j$ = -40+150°C, $V_{bb}$ = 13,5V, unless otherwise specified |                        | min.   | typ. | max. |    |
| Input                                                              |                        |        |      |      |    |
| Input turn-on threshold voltage                                    | V <sub>IN(T+)</sub>    | -      | -    | 2.2  | V  |
| (see page 12)                                                      |                        |        |      |      |    |
| Input turn-off threshold voltage                                   | V <sub>IN(T-)</sub>    | 0.8    | -    | -    |    |
| (see page 12)                                                      |                        |        |      |      |    |
| Input threshold hysteresis                                         | $\Delta V_{\rm IN(T)}$ | -      | 0.3  | -    |    |
| Off state input current (see page 12)                              | / <sub>IN(off)</sub>   | 1      | -    | 25   | μA |
| $V_{IN} = 0.7 V$                                                   |                        |        |      |      |    |
| On state input current (see page 12)                               | / <sub>IN(on)</sub>    | 3      | -    | 25   |    |
| $V_{\rm IN} = 5 V$                                                 |                        |        |      |      |    |
| Input resistance (see page 7)                                      | R <sub>I</sub>         | 1.5    | 3.5  | 5    | kΩ |



### **GND** disconnect



### GND disconnect with GND pull up



V<sub>bb</sub> disconnect with charged inductive



# Inductive Load switch-off energy dissipation



Energy stored in load inductance:  $E_L = \frac{1}{2} * L * I_L^2$ While demagnetizing load inductance, the enérgy dissipated in PROFET is  $E_{AS} = E_{bb} + E_L - E_R = V_{ON(CL)} * i_L(t) dt$ , with an approximate solution for  $R_L > 0\Omega$ :

$$E_{AS} = \frac{I_L * L}{2 * R_L} * (V_{bb} + |V_{OUT(CL)|}) * \ln(1 + \frac{I_L * R_L}{|V_{OUT(CL)|}})$$



### **GND** disconnect



### GND disconnect with GND pull up



V<sub>bb</sub> disconnect with charged inductive



# Inductive Load switch-off energy dissipation



Energy stored in load inductance:  $E_L = \frac{1}{2} * L * I_L^2$ While demagnetizing load inductance, the enérgy dissipated in PROFET is  $E_{AS} = E_{bb} + E_L - E_R = V_{ON(CL)} * i_L(t) dt$ , with an approximate solution for  $R_L > 0\Omega$ :

$$E_{AS} = \frac{I_L * L}{2 * R_L} * (V_{bb} + |V_{OUT(CL)|}) * \ln(1 + \frac{I_L * R_L}{|V_{OUT(CL)}|})$$



# Typ. transient thermal impedance $Z_{thJA}=f(t_p) @ 6cm^2$ heatsink area Parameter: $D=t_p/T$

D=0.5 K/W D=0.2 D=0.1 10<sup>1</sup> D=0.05 Z<sub>thJA</sub> D=0.02 10 <sup>0</sup> D=0.01 D=0 10 -10 <sup>-2</sup> s <sup>10<sup>4</sup></sup> 10 <sup>-7</sup>10 <sup>-6</sup>10 <sup>-5</sup>10 <sup>-4</sup>10 <sup>-3</sup>10 <sup>-2</sup>10 <sup>-1</sup>10 <sup>0</sup>10 <sup>1</sup>10 <sup>2</sup> *t*p

Typ. on-state resistance **R**<sub>ON</sub> = f(T<sub>i</sub>) ; V<sub>bb</sub> = 13,5V ; V<sub>in</sub> = high



# Typ. transient thermal impedance $Z_{thJA}=f(t_p)$ @ min. footprint Parameter: $D=t_p/T$



Typ. on-state resistance  $R_{ON} = f(V_{bb}); I_L = 0.5A; V_{in} = high$ 





Typ. turn on time  $t_{on} = f(T_j); R_L = 47\Omega$ 



Typ. slew rate on  $dV/dt_{on} = f(T_j)$ ;  $R_L = 47 \Omega$ 



Typ. turn off time  $t_{off} = f(T_j); R_L = 47\Omega$ 



Typ. slew rate off  $dV/dt_{off} = f(T_j); R_L = 47 \Omega$ 





Typ. standby current

 $I_{bb(off)} = f(T_j)$ ;  $V_{bb} = 32V$ ;  $V_{IN} = Iow$ 



Typ. initial peak short circuit current limit  $I_{L(SCp)} = f(T_j)$ ;  $V_{bb} = 20V$ 



Typ. leakage current  $I_{L(off)} = f(T_j)$ ;  $V_{bb} = 32V$ ;  $V_{IN} = Iow$ 



Typ. initial short circuit shutdown time  $t_{off(SC)} = f(T_{j,start})$ ;  $V_{bb} = 20V$ 





Typ. input current

 $I_{IN(on/off)} = f(T_j); V_{bb} = 13,5V; V_{IN} = low/high$  $V_{INlow} \le 0,7V; V_{INhigh} = 5V$ 







**Typ. input current** *I*<sub>IN</sub> = f(*V*<sub>IN</sub>); *V*<sub>bb</sub> = 13.5V



# Typ. input threshold voltage

 $V_{IN(th)} = f(V_{bb})$ ;  $T_j = 25^{\circ}C$ 





# Maximum allowable load inductance for a single switch off



# Maximum allowable inductive switch-off energy, single pulse

 $E_{AS} = f(I_L); T_{jstart} = 150^{\circ}C, V_{bb} = 13,5V$ 





# **Timing diagrams**



Figure 2b: Switching a lamp,



**Figure 2a:** Switching a resistive load, turn-on/off time and slew rate definition



Figure 2c: Switching an inductive load





Figure 3a: Turn on into short circuit,

shut down by overtemperature, restart by cooling



Heating up of the chip may require several milliseconds, depending on external conditions.

### **Figure 4**: Overtemperature: Reset if $T_j < T_{jt}$



# Figure 5: Undervoltage restart of charge pump





#### **Package Outlines**

## 1 Package Outlines



### Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.



# 2 Revision History

| Revision | Date       | Changes                                                                                                                                                                                                                                 |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1      | 2008-09-29 | all pages:<br>added new Infineon logo<br>Initial version of RoHS-compliant derivate of the ISP772T<br>Page 1 and 17: added RoHS compliance statement and Green product feature<br>Page 1, 17: Package changed to RoHS compliant version |
|          |            | Page 18: added Revision history<br>Page 19: update of disclaimer                                                                                                                                                                        |

Edition 2008-09-29

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

#### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.