

MOSFET - N-Channel, POWERTRENCH®, DUAL COOL® 88

60 V, 292 A, 1.1 mΩ

FDMT80060DC

Ger	neral	Desc	rin	tion

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process. Advancements in both silicon and DUAL COOL package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

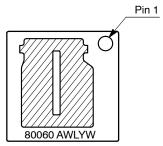
Features

- Max $r_{DS(on)} = 1.1 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 43 \text{ A}$
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 8 \text{ V}$, $I_D = 37 \text{ A}$
- Advanced Package and Silicon Combination for Low r_{DS(on)} and High Efficiency
- Next Generation Enhanced Body Diode Technology, Engineered for Soft Recovery
- Low Profile 8x8 mm MLP Package
- MSL1 Robust Package Design
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications

- OringFET / Load Switching
- Synchronous Rectification
- DC-DC Conversion

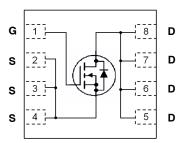
V _{DS}	r _{DS(ON)} MAX	I _D MAX
60 V	$1.1~\text{m}\Omega$ @ 10 V	292 A
	1.3 mΩ @ 8 V	


Bottom

Top

TDFNW8 8.3x8.4, 2P,

DUAL COOL, OPTION 2 CASE 507AR


MARKING DIAGRAM

80060 = Device Code
A = Assembly Location
WL = Wafer Lot Code

Y = Year Code
W = Work Week Code

ELECTRICAL CONNECTION

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter				Ratings	Unit
V _{DS}	Drain to Source Voltage				60	V
V_{GS}	Gate to Source Vo	ltage			±20	V
I _D	Drain Current	-Continuous	T _C = 25°C	(Note 5)	292	Α
		-Continuous	T _C = 100°C	(Note 5)	184	
		-Continuous	T _A = 25°C	(Note 1a)	43	
		-Pulsed		(Note 4)	1825	
E _{AS}	Single Pulse Avala	anche Energy		(Note 3)	2400	mJ
P_{D}	Power Dissipation		T _C = 25°C		156	W
	Power Dissipation		T _A = 25°C	(Note 1a)	3.2	
T _J , T _{STG}	Operating and Sto	rage Junction Temper	ature Range		-55 to +150	°C

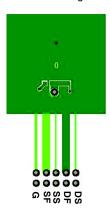
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Top Source)	1.6	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	0.8	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	15	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	21	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	9	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHAP	RACTERISTICS	•				
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	-	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	30	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	_	-	±100	nA
ON CHAR	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	3.5	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C	-	-13	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 43 A	_	0.87	1.1	mΩ
		V _{GS} = 8 V, I _D = 37 A	_	1.1	1.3	
		V _{GS} = 10 V, I _D = 43 A, T _J = 125°C	_	1.3	1.7	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 43 A	_	134	_	S
DYNAMIC	CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	_	14406	20170	pF
C _{oss}	Output Capacitance		_	3222	4515	pF
C _{rss}	Reverse Transfer Capacitance	1	_	87	175	pF
R _g	Gate Resistance		0.1	1.8	4.5	Ω
SWITCHIN	IG CHARACTERISTICS					
td _(on)	Turn-On Delay Time	V _{DD} = 30 V, I _D = 43 A,	-	75	120	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	_	47	76	
t _{d(off)}	Turn-Off Delay Time	1	_	66	106	
t _f	Fall Time	1	_	19	34	
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 30 V, I_D = 43 A	-	170	238	nC
		V _{GS} = 0 V to 8 V, V _{DD} = 30 V, I _D = 43 A	_	137	192	
Q _{gs}	Gate to Source Charge	V _{DD} = 30 V, I _D = 43 A	_	71	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	_	19	-	nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS	•	<u>-</u>	-	-	-
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.6 A (Note 2)	-	0.7	1.1	V
		V _{GS} = 0 V, I _S = 43 A (Note 2)	-	0.8	1.2	
t _{rr}	Reverse Recovery Time	I _F = 43 A, di/dt = 100 A/μs	-	84	135	ns
Q _{rr}	Reverse Recovery Charge	1	_	89	143	nC

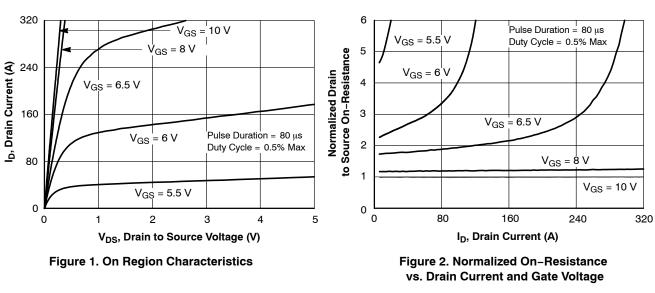

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Top Source)	1.6	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	0.8	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	14	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	60	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	15	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	21	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	9	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	11	

NOTES:

 R_{0,JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0CA} is determined by the user's board design.


 a) 38°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) 200 FPM Airflow, No Heat Sink, 1 in² pad of 2 oz copper
- h) 200 FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) 200 FPM Airflow, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) 200 FPM Airflow, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) 200 FPM Airflow, $45.2 \times 41.4 \times 11.7$ mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in 2 pad of 2 oz copper the companion of the comp
- I) 200 FPM Airflow, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width $< 300 \mu s$, Duty cycle < 2.0%.
- 3. EAS of 2400 mJ is based on starting TJ = 25°C; N-ch: L = 3 mH, IAS = 40 A, VDD = 60 V, VGS = 10 V. 100% test at L = 0.3 mH, IAS = 87 A.
- 4. Pulsed Id please refer to Figure 11 SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

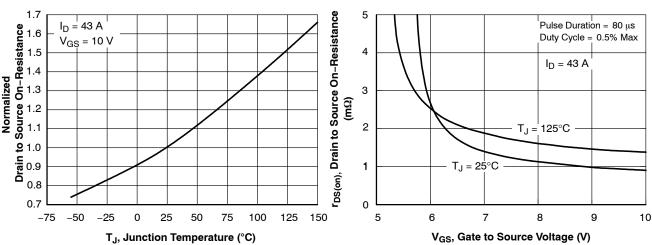


Figure 3. Normalized On Resistance vs. Junction Temperature

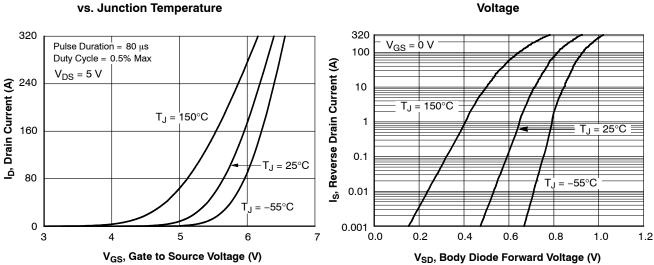


Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Figure 4. On-Resistance vs. Gate to Source

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

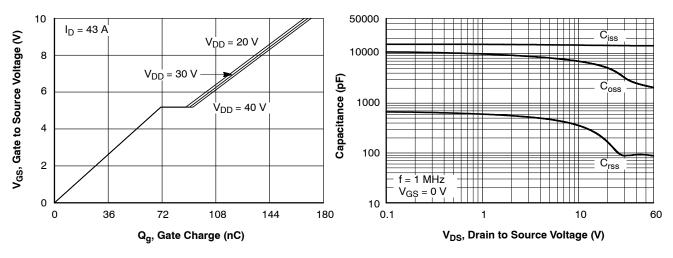


Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

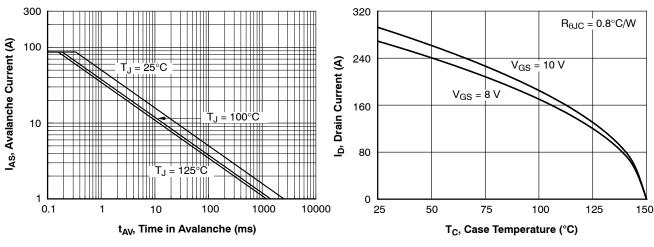


Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs Case Temperature

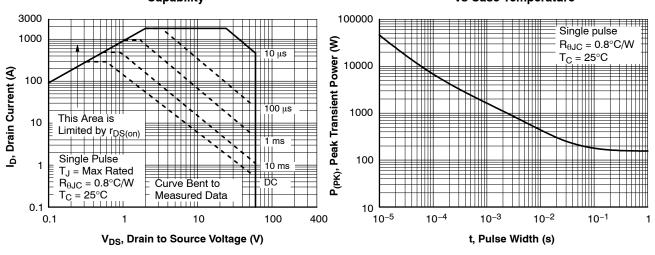
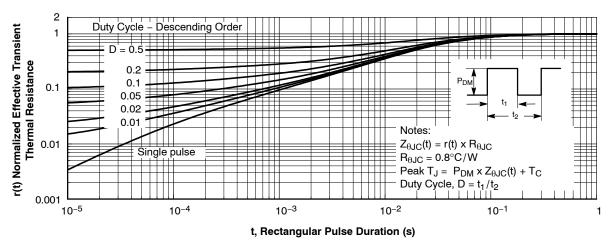
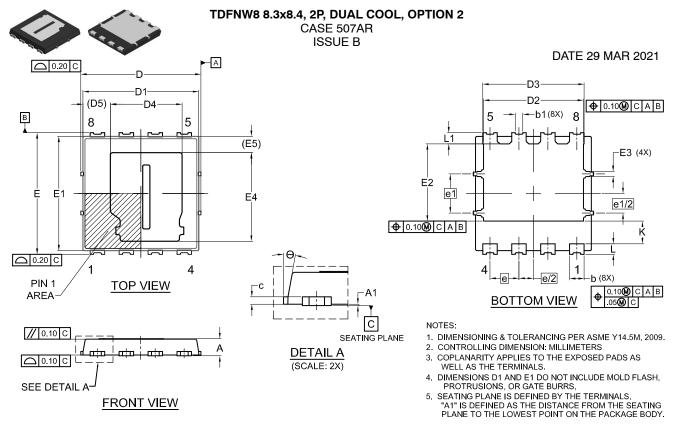


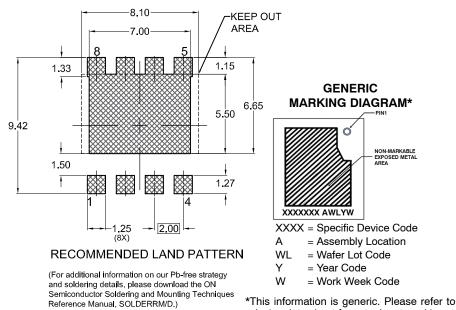
Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)




Figure 13. Junction-to-Case Transient Thermal Response Curve


PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping [†]
80060	FDMT80060DC	TDFNW8 8.3x8.4, 2P, DUAL COOL, OPTION 2	13"	13.3 mm	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH and DUAL COOL are registered trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DIM	N	ILLIMET	ERS
Diw	MIN.	NOM.	MAX.
Α	0.82	0.92	1.02
A1	0.00		0.05
b	0.90	1.00	1.10
b1	0.35	0.45	0.55
С	0.23	0.28	0.33
D	8.20	8.30	8.40
D1	7.90	8.00	8.10
D2	6.80	6.90	7.00
D3	6.90	7.00	7.10
D4	4.90	5.05	5.20
D5	1.85 REF		
Е	8.30	8.40	8.50
E1	7.80	7.90	8.00
E2	5.24	5.34	5.44
E3	0.25	0.35	0.45
E4	6.08	6.23	6.38
E5		1.13 RE	F
е		2.00 BS	С
e/2		1.00 BS	С
e1		2.70 BS	С
e1/2		1.35 BS	С
K	1.50	1.57	1.70
L	0.64	0.74	0.84
L1	0.67	0.77	0.87
θ	0°		12°

DOCUMENT NUMBER:	98AON95711G	Electronic versions are uncontrolled except when accessed directly from the Document Repositive Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TDFNW8 8.3x8.4. 2P. DUAI	L COOL, OPTION 2	PAGE 1 OF 1

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales