

FDA801

4 x 50 W class-D digital input power amplifier with I²C diagnostics and low voltage operation

Data brief

Features

- Integrated 110 dB D/A conversion
- I²S and TDM digital input (3.3/1.8 V)
- Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz
- Class-D channels with 93% efficiency
- EMI control for AM compatibility
- EMI compliance evaluated following normative IEC61967-4 and IEC62132-4
- Low radiation function (LRF)
- Idle tones free DAC
- Output lowpass filter included in the feedback allowing lower cost filter components
- Max. output power
 - 4 x 50 W/4 Ω @ 15.2 V, 1 kHz
- High output power capability
 - 28 W/4 Ω 10 % THD, Vd = 14.4 V
- Full I²C bus driving (3.3/1.8 V):
 - Channels independent tristate
 - Channel independent soft play/mute
 - I²C bus diagnostics, including DC and AC load detection
- Integrated fault protection
- Input and output offset detector
- Clipping detector

ESD protection

- 6 V operation ("Start Stop" engines compatibility)
- 2 and 1 Ω load driving capability

Description

FDA801 is a new BCD technology quad BRIDGE class D amplifier, specially intended for automotive applications.

Thanks to the technology used, it is possible to integrate a high performance D/A converter together with powerful MOSFET outputs in class D, to get an outstanding efficiency compared with the standard class AB.

The integrated D/A converter allows to reach outstanding performances (110 dB S/N ratio with 108 dB of dynamic range). The feedback loop includes the output L-C low-pass filter, allowing superior frequency response linearity and lower distortion independently from the inductor and capacitor quality.

FDA801 is fully configurable through I^2C bus interface and integrates a full diagnostics array specially intended for automotive applications. Thanks to the solutions implemented to contain EMI emissions, the device is intended to be used in the standard single DIN car-radio box together with the tuner.

Moreover FDA801 is able to work with power supply as low as 6 V, thus supporting the most recent low voltage ('start-stop') car-makers specification.

Table 1. Device summary

Order code	Package	Packing
FDA801-VYY	LQFP64 (exp. pad up)	Tray
FDA801-VYT	LQFP64 (exp. pad up)	Tape & Reel

November 2015

DocID028631 Rev 1

For further information contact your local STMicroelectronics sales office.

1/11

Contents

4	Revision history				
	3.1 LQFP64 (10x10x1.4 mm exp. pad up) package information				
3	Package information				
2	General introduction7				
1	Block diagram and pins description				

1 Block diagram and pins description

Figure 1. Block diagram

DocID028631 Rev 1

Figure 2. Tentative pins connection diagram (top view)

Table 2. Pins list description

N#	Pin	Function		
1	FB2+	Channel 2, half bridge plus, Feedback		
2	OUT2+	Channel 2, half bridge plus, Output		
3	OUT2+	Channel 2, half bridge plus, Output		
4	VCC2+	Channel 2, half bridge plus, Power Supply		
5	VCC2-	Channel 2, half bridge minus, Power Supply		
6	OUT2-	Channel 2, half bridge minus, Output		
7	OUT2-	Channel 2, half bridge minus, Output		
8	FB2-	Channel 2, half bridge minus, Feedback		
9	GND2-	Channel 2, half bridge minus, Power Ground		
10	GND1-	Channel 1, half bridge minus, Power Ground		
11	FB1-	Channel 1, half bridge minus, Feedback		
12	OUT1-	Channel 1, half bridge minus, Output		
13	OUT1-	Channel 1, half bridge minus, Output		
14	VCC1-	Channel 1, half bridge minus, Power Supply		
15	VCC1+	Channel 1, half bridge plus, Power Supply		
16	OUT1+	Channel 1, half bridge plus, Output		

DocID028631 Rev 1

Table 2. Pins list description (continued)

N#	Pin	Function		
17	OUT1+	Channel 1, half bridge plus, Output		
18	GND1+	Channel 1, half bridge plus, Power Ground		
19	FB1+	Channel 1, half bridge plus, Feedback		
20	ENABLE 3	Enable 3		
21	ENABLE 2	Enable 2		
22	ENABLE 1	Enable 1		
23	DGSVR	Negative digital supply V(SVR)-0.9V (Internally generated)		
24	D1e8SVR	Positive digital supply V(SVR)+0.9V (Internally generated)		
25	DVdd	Digital supply		
26	Dgnd	Digital ground		
27	CPump1	Charge Pump pin1		
28	VddCP	Charge Pump output voltage		
29	CPump2	Charge Pump pin2		
30	FB3+	Channel 3, half bridge plus, Feedback		
31	GND3+	Channel 3, half bridge plus, Power Ground		
32	OUT3+	Channel 3, half bridge plus, Output		
33	OUT3+	Channel 3, half bridge plus, Output		
34	VCC3+	Channel 3, half bridge plus, Power Supply		
35	VCC3-	Channel 3, half bridge minus, Power Supply		
36	OUT3-	Channel 3, half bridge minus, Output		
37	OUT3-	Channel 3, half bridge minus, Output		
38	FB3-	Channel 3, half bridge minus, Feedback		
39	GND3-	Channel 3, half bridge minus, Power Ground		
40	GND4-	Channel 4, half bridge minus, Power Ground		
41	FB4-	Channel 4, half bridge minus, Feedback		
42	OUT4-	Channel 4, half bridge minus, Output		
43	OUT4-	Channel 4, half bridge minus, Output		
44	VCC4-	Channel 4, half bridge minus, Power Supply		
45	VCC4+	Channel 4, half bridge plus, Power Supply		
46	OUT4+	Channel 4, half bridge plus, Output		
47	OUT4+	Channel 4, half bridge plus, Output		
48	FB4+	Channel 4, half bridge plus, Feedback		
49	TAB	Device slug connection		
50	GND4+	Channel 4, half bridge plus, Power Ground		

N#	Pin	Function		
51	CD/Diag	Clipping detector and diagnostic output pin: – Overcurrent protection intervention – Thermal warning – Offset detection		
52	I2Cclk	I2C Clock		
53	I2Cdata	I2C Data		
54	I2Sdata2	I2S/TDM Data input 2		
55	I2Sdata1	I2S/TDM Data input 1		
56	I2Sclk	I2S/TDM Clock input		
57	I2Sws	I2S/TDM Sinc input		
58	Agnd	Analog ground		
59	AVdd	Analog supply		
60	AGSVR	Negative Analog Supply V(SVR)-2.5V (Internally generated)		
61	A5VSVR	Positive Analog Supply V(SVR)+2.5V (Internally generated)		
62	SVR	Supply Voltage Ripple Rejection Capacitor		
63	HWMute	Hardware mute pin		
64	GND2+	Channel 2, half bridge plus, Power Ground		

Table 2. Pins list description (continued)

2 General introduction

FDA801 is a fully digital single chip class D amplifier with high immunity to the demodulation filter effects. The high integration level and the on-board signal processing allow excellent audio performance to be achieved.

Thanks to the digital input and to the feedback strategy in the power stage that make the amplifier immune from the output filter components non-linearity, the number and size of the external components are minimized.

A number of features are included to reduce EMI and the fully digital approach provides a strong GSM immunity.

FDA801 includes: digital I²C and I²S interfaces, internal 24 bits DAC conversion, digital signal processing for interpolation and noise shaping, innovative self-diagnostic functions and automatic detection of wrong load connections or variation of the load, internal PLL for a clock generation.

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*.

ECOPACK[®] is an ST trademark.

3.1 LQFP64 (10x10x1.4 mm exp. pad up) package information

Figure 3. LQFP64 (10x10x1.4 mm exp. pad up) package outline

			Dime	nsions		
Ref	Millimeters			Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
θ	0°	3.5°	6°	0°	3.5°	6°
θ1	0°	9°	12°	0°	9°	12°
θ2	11°	12°	13°	11°	12°	13°
θ3	11°	12°	13°	11°	12°	13°
А	-	-	1.49	-	-	0.0587
A1	-0.04	-	0.04	-0.0016	-	0.0016
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571
b	-	-	0.255	-	-	0.0100
b1	0.17	0.20	0.23	0.0067	0.0079	0.0091
с	0.09	-	0.20	0.0035	-	0.0079
c1	0.09	-	0.16	0.0035	-	0.0063
D	-	12.00	-	-	0.4724	-
D1 ⁽²⁾	-	10.00	-	-	0.3937	-
D2 ⁽³⁾	-	6.00	-	-	02362	-
е	-	0.50	-	-	0.0197	-
E	-	12.00	-	-	0.4724	-
E1 ⁽²⁾	-	10.00	-	-	0.3937	-
E2 ⁽³⁾	-	6.00	-	-	0.2362	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
N	-	64.00	-	-	2.5197	-
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa	-	0.20	-	-	0.0079	-
bbb	-	0.20	-	-	0.0079	-
ссс	-	0.08	-	-	0.0031	-
ddd	-	0.08	-	-	0.0031	-

 Table 3. LQFP64 (10x10x1.4 mm exp. pad up) package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusion is "0.25 mm" per side.

3. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface.

4 Revision history

Table 4. Document revision history

Date	Revision	Changes
13-Nov-2015	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID028631 Rev 1