

Sample &

Buv

DS80PCI102

SNLS344G -JULY 2011-REVISED AUGUST 2015

DS80PCI102 2.5-Gbps / 5.0-Gbps / 8.0-Gbps 1-Lane PCI-Express™ Repeater With Equalization and De-Emphasis

Features 1

- Comprehensive Family, Proven System Interoperability
 - DS80PCI102: x1 PCle Gen-1, Gen-2, and Gen-3
 - DS80PCI402: x4 PCIe Gen-1, Gen-2, and Gen-3
 - DS80PCI800: x8/x16 PCIe Gen-1, Gen-2, and Gen-3
- Automatic Rate-Detect and Adaptation to • Gen-1, Gen-2, and Gen-3 Speeds
- Seamless Support for Gen-3 Transmit FIR Handshake
- Receiver EQ (up to 36 dB), Transmit De-٠ Emphasis (up to -12 dB)
- Adjustable Transmit VOD: 0.7 to 1.3 Vp-p (Pin Mode)
- 0.2 UI of Residual Deterministic Jitter at 8 Gbps After 40 Inches of FR4 or 10 m 30-awg PCIe Cable
- Low Power Dissipation With Ability to Turn Off Unused Channels: 65 mW/Channel
- Automatic Receiver Detect (Hot-Plug)
- Multiple Configuration Modes: Pins/SMBus/Direct-**EEPROM Load**
- Flow-Thru Pinout in 4-mm x 4-mm 24-Pin Leadless WQFN Package
- Single Supply Voltage: 2.5 V or 3.3 V (Selectable)
- ±5-kV HBM ESD Rating
- -40°C to 85°C Operating Temperature Range

Typical Application Block Diagram

2 Applications

PCI Express Gen-1, Gen-2, and Gen-3

3 Description

The DS80PCI102 is a low-power, 1-lane repeater with 4-stage input equalization, and an output deemphasis driver to enhance the reach of PCI-Express serial links in board-to-board or cable interconnects. The device is ideal for x1 PCI-Express configuration, and it automatically detects and adapts to Gen-1, Gen-2, and Gen-3 data rates for easy system upgrade.

DS80PCI102 offers programmable transmit deemphasis (up to 12 dB), transmit VOD (up to 1300 mVp-p), and receive equalization (up to 36 dB) to enable longer distance transmission in lossy copper cables (10 meters or more), or backplanes (40 inches or more) with multiple connectors. The receiver can open an input eye that is completely closed due to inter-symbol interference (ISI) introduced by the interconnect medium.

The programmable settings can be applied easily through pins or software (SMBus/I²C), or can be loaded through an external EEPROM. When operating in the EEPROM mode, the configuration information is automatically loaded on power up, eliminates the need for which an external microprocessor or software driver.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DS80PCI102	WQFN (24)	4.00 mm x 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic Diagram

Schematic shows connection for SMBus Slave Mode (ENSMB=1kΩ to VDD) For SMBus Master Mode or Pin Mode configuration, the connections are diff
 SMBus signals need to be pulled up elsewhere in the system.
 Schematic requires different connections for 2.5 V mode.

Copyright © 2011–2015, Texas Instruments Incorporated

2

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications5
	6.1	Absolute Maximum Ratings5
	6.2	ESD Ratings 5
	6.3	Recommended Operating Conditions 5
	6.4	Electrical Characteristics 6
	6.5	Electrical Characteristics — Serial Management Bus Interface
	6.6	Timing Diagrams
	6.7	Typical Characteristics 11
7	Deta	ailed Description 12
	7.1	Overview 12
	7.2	Functional Block Diagram 12
	7.3	Feature Description 13
	7.4	Device Functional Modes 15
	7.5	Programming 16

	7.6	Register Maps	20
8	Appl	ication and Implementation	35
	8.1	Application Information	35
	8.2	Typical Application	35
9	Powe	er Supply Recommendations	37
	9.1	3.3-V or 2.5-V Supply Mode Operation	37
	9.2	Power Supply Bypass	38
10	Layo	out	39
	10.1	Layout Guidelines	39
	10.2	Layout Example	39
11	Devi	ce and Documentation Support	40
	11.1	Device Support	40
	11.2	Documentation Support	40
	11.3	Community Resources	40
	11.4	Trademarks	40
	11.5	Electrostatic Discharge Caution	40
	11.6	Glossary	40
12		hanical, Packaging, and Orderable	
	Infor	mation	40

4 Revision History

C	hanges from Revision F (October 2014) to Revision G	Page
•	Changed pin mapping for VIN and VDD to correct typo	5
•	Added full SMBus-to-EEPROM table mapping	20
•	Changed description of EEPROM bits to match corresponding SMBus register map description	20
•	Changed location of CHB VOD in Table 7 to match correct location in EEPROM map	23
•	Changed address start and end numbers for Devices 0-3 to reflect correct bytes per device	25
•	Changed EEPROM bit description to match the description in the corresponding SMBus register map	25
•	Changed location of CHA VOD in Table 9 to match correct location in EEPROM map	27
•	Added information in Register Map about register bits saved to EEPROM	29

Changes from Revision E (February 2013) to Revision F

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
	Mechanical, Packaging, and Orderable Information section

Product Folder Links: DS80PCI102

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

PIN		I/O. TYPE	DECODIDITION		
NAME	NAME NO.		DESCRIPTION		
DIFFERENTIAL I	HIGH SPEED) I/O'S			
INA+, INA-, INB+, INB-24, 23 11, 12I, CMLInverting and noninverting differential inputs to the equalizer. A gated on-chip 50-Ω termination resistor connects INn+ to VDD and INn- to VDD depending on the state of RXDET. See Table 4 AC coupling required on high-speed I/O					
OUTA+, OUTA-, 7, 8 OUTB+, OUTB- 20, 19 O, CML		O, CML	Inverting and noninverting 50- Ω driver outputs with de-emphasis. Compatible with AC-coupled CML inputs.		
CONTROL PINS	- SHARED	(LVCMOS)			
ENSMB 3 I, 4-LEVEL, LVCMOS			System management bus (SMBus) enable pin Tie 1 k Ω to VDD (2.5-V mode) or VIN (3.3-V mode) = Register access SMBus slave mode FLOAT = Read external EEPROM (master SMBUS mode) Tie 1 k Ω to GND = Pin mode		

(1) LVCMOS inputs without the "FLOAT" conditions must be driven to a logic low or high at all times or operation is not verified.

(2) Input edge rate for LVCMOS/FLOAT inputs must be faster than 50 ns from 10% to 90%.

(3) For 3.3-V mode operation, VIN pin = 3.3 V and the VDD for the 4-level input is 3.3 V.

(4) For 2.5-V mode operation, VDD pin = 2.5 V and the VDD for the 4-level input is 2.5 V.

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

www.ti.com

STRUMENTS

EXAS

Pin Functions⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (continued)

PIN			
NAME	NO.	I/O, TYPE	DESCRIPTION
ENSMB = 1 (SM		MODE)	
SCL	5	I, 2-LEVEL, LVCMOS, O, open drain	In SMBus Slave Mode, this pin is the SMBus clock I/O. Clock input or open drain output. External 2- $k\Omega$ to 5- $k\Omega$ pullup resistor to VDD or VIN recommended as per SMBus interface standards. ⁽⁵⁾
SDA	4	I, 2-LEVEL, LVCMOS, O, open drain	In both SMBus Modes, this pin is the SMBus data I/O. Data input or open drain output. External 2-k Ω to 5-k Ω pullup resistor to VDD or VIN recommended as per SMBus interface standards. ⁽⁵⁾
AD0-AD3	10, 9, 2, 1	I, 4-LEVEL, LVCMOS	SMBus Slave Address Inputs. In both SMBus Modes, these pins are the user set SMBus slave address inputs. External $1-k\Omega$ pullup or pulldown recommended.
READEN	17	I, 2-LEVEL, LVCMOS	When in SMBus Slave Mode the READEN pin must be tied LOW for the AD[3:0] to be active. If this pin is tied HIGH or FLOAT, the device slave address is 0xB0.
ENSMB = FLOA	T (SMBus M	ASTER MODE)	
SCL	5	I, 2-LEVEL, LVCMOS, O, open drain	Clock output when loading EEPROM configuration, reverting to SMBus clock input when EEPROM load is complete (DONE = 0). External 2-k Ω to 5-k Ω pullup resistor to VDD or VIN recommended as per SMBus interface standards. ⁽⁵⁾
SDA	4	I, 2-LEVEL, LVCMOS, O, open drain	In both SMBus Modes, this pin is the SMBus data I/O. Data input or open drain output. External 2-k Ω to 5-k Ω pullup resistor to VDD or VIN recommended as per SMBus interface standards. ⁽⁵⁾
AD0-AD3	10, 9, 2, 1	I, 4-LEVEL, LVCMOS	SMBus Slave Address Inputs. In both SMBus Modes, these pins are the user set SMBus slave address inputs. External 1 -k Ω pullup or pulldown recommended.
READEN	17	I, 2-LEVEL, LVCMOS	A logic low on this pin starts the load from the external EEPROM. ⁽⁶⁾ Once EEPROM load is complete ($\overline{\text{DONE}} = 0$), this pin functionality remains as $\overline{\text{READEN}}$. It does not revert to an SD_TH input.
DONE	18	O, 2-LEVEL, LVCMOS	Valid register load status output HIGH = External EEPROM load failed or incomplete LOW = External EEPROM load passed
ENSMB = 0 (PIN	MODE)		
EQA0, EQA1 EQB0, EQB1	10, 9 1, 2	I, 4-LEVEL, LVCMOS	EQA[1:0] and EQB[1:0] control the level of equalization on the input pins. The pins are active only when ENSMB is deasserted (LOW). When ENSMB goes high the SMBus registers provide independent control of each lane, and the EQA[1:0] and EQB[1:0] pins are converted to SMBUS AD[3:0] inputs. See Table 2.
DEMA, DEMB	4, 5	I, 4-LEVEL, LVCMOS	DEMA DEMB controls the level of de-emphasis. The DEMA/B pins are only active when ENSMB is deasserted (LOW). DEMA controls the A channel and DEMB controls the B channel. When ENSMB goes high the SMBus registers provide independent control of each channel and the DEM pins are converted to SMBUS SDA and SCL pins. See Table 3.
CONTROL PINS	6 — ВОТН РІ	N AND SMBUS	MODES (LVCMOS)
PRSNT	6	I, 2-LEVEL, LVCMOS	Cable Present Detect input. High when a cable is not present per PCIe Cabling Spec. 1.0. Puts part into low power mode. When LOW (normal operation) part is enabled. See Table 4.
VOD_SEL	17	I, 4-LEVEL, LVCMOS	VOD Select pin. See Table 3.
VDD_SEL	16	I, LVCMOS	Controls the internal regulator. FLOAT = 2.5-V mode Tie GND = 3.3-V mode See Figure 16.
RXDET	18	I, 4-LEVEL, LVCMOS	The RXDET pin controls the receiver detect function. Depending on the input level, a $50-\Omega$ or > $50-k\Omega$ termination to the power rail is enabled. See Table 4.

(5) SCL and SDA pins can be tied either to 3.3 V or 2.5 V, regardless of whether the device is operating in 2.5-V mode or 3.3-V mode.
(6) When READEN is asserted low, the device attempts to load EEPROM. If EEPROM cannot be loaded successfully, for example due to an invalid or blank hex file, the DS80PCI102 waits indefinitely in an unknown state where SMBus access is not possible. DONE pin remains high in this situation.

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

Pin Functions⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (continued)

PIN			DESCRIPTION	
NAME	NO.	I/O, TYPE	DESCRIPTION	
RATE	13	I, 4-LEVEL, LVCMOS	RATE control pin selects GEN 1,2 and GEN 3 operating modes. Tie 1 k Ω to GND = GEN 1,2 FLOAT = AUTO Rate Select of Gen1/2 and Gen3 with de-emphasis Tie 20 k Ω to GND = GEN 3 without de-emphasis Tied 1 k Ω to VDD = RESERVED	
SD_TH	14	I, 4-LEVEL, LVCMOS	Controls the internal Signal Detect Threshold. See Table 5.	
POWER				
VIN	15	Power	In 3.3-V mode, feed 3.3 V to VIN In 2.5-V mode, leave floating	
VDD	21, 22	Power	Power supply pins 2.5-V mode, connect to 2.5-V supply 3.3-V mode, connect 0.1-µF capacitor to each VDD pin (output of LDO)	
GND	DAP	Power	Ground pad (DAP - die attach pad).	

6 Specifications

6.1 Absolute Maximum Ratings ⁽¹⁾⁽²⁾

	MIN	MAX	UNIT
Supply voltage (VDD - 2.5 V)	-0.5	2.75	V
Supply voltage (VIN - 3.3 V)	-0.5	4.0	V
LVCMOS Input/Output Voltage	-0.5	4.0	V
CML Input Voltage	-0.5	VDD + 0.5	V
CML Input Current	-30	30	mA
Junction Temperature		125	°C
Lead temperature soldering (4 s) ⁽³⁾		260	°C
Storage temperature, T _{stg}	-40	125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Absolute Maximum Numbers are specified for a junction temperature range of -40° C to 125° C. Models are validated to Maximum Operating Voltages only.

(3) For soldering specifications: See application note SNOA549.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±5000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all $\ensuremath{pins^{(2)}}$	±1250	V
		MM, STD - JESD22-A115-A	±100	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supply Voltage (2.5-V mode)	2.375	2.5	2.625	V
Supply Voltage (3.3-V mode)	3.0	3.3	3.6	V
Ambient Temperature	-40	25	85	°C
SMBus (SDA, SCL)			3.6	V

DS80PCI102

SNLS344G -JULY 2011-REVISED AUGUST 2015

www.ti.com

6.4 Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER						
		VIN = 3.3-V supply, EQ = Enabled, RXDET = 1, VOD = 1.0 Vp-p, PRSNT = LOW		50	63	mA
IDD	Supply Current	VIN = 3.3-V supply, PRSNT = HIGH		9	12	mA
		VDD = 2.5 V, PRSNT = HIGH		6	9	mA
LVCMOS / LVT	TL DC SPECIFICATIONS					
V _{IH25}	<u>High-level i</u> nput voltage (READ_EN pin)	2.5-V Mode	2.0		VDD	V
V _{IH33}	<u>High-level i</u> nput voltage (READ_EN pin)	3.3-V Mode	2.0		VIN	V
	High Level Input Voltage	2.5-V Mode	0.9 × VDD		VDD	V
V _{IH}	(PRSNT pin)	3.3-V Mode	0.9 × VIN		VIN	v
V _{IL}	Low Level Input Voltage		0		0.7	V
V _{OH}	High Level Output Voltage (DONE pin)	$I_{OH} = -4 \text{ mA}$	2.0			V
V _{OL}	Low Level Output Voltage (DONE pin)	I _{OL} = 4 mA			0.4	V
	Input High Current (PRSNT pin)	VIN Supply = 3.6 V,	–15		15	μA
I _{IH}	Input High Current with internal resistors (4–level input pin)	Input = 3.6 V	+20		80	μA
	Input Low Current (PRSNT pin)	VIN = 3.6 V,	-15		15	μA
I _{IL}	Input Low Current with internal resistors (4–level input pin)	Input = 0 V	-160		-40	μA
CML RECEIVE	R INPUTS (IN_N+, IN_N-)	<u> </u>			I	
	· - · - ·	0.05 to 1.25 GHz		-16		dB
RL _{RX-DIFF}	RX Differential return loss	1.25 to 2.5 GHz		-16		dB
101211		2.5 to 4.0 GHz		-14		dB
		0.05 to 2.5 GHz		-12		dB
RL _{RX-CM}	RX Common mode return loss	2.5 to 4.0 GHz		-8		dB
Z _{RX-DC}	RX DC single-ended impedance	VDD = 2.5 V	40	50	60	Ω
Z _{RX-DIFF-DC}	RX DC differential mode impedance	VDD = 2.5 V	80	100	120	Ω
V _{RX-DIFF-DC}	VID - Differential RX peak to peak input voltage				1.2	V
Z _{RX-HIGH-IMP-} DC-POS	DC Input common mode impedance for V > 0	VID = 0 to 200 mV, ENSMB = 0, RXDET = 0, VDD = 2.5 V		50		kΩ
V _{RX-SIGNAL-DET-} DIFF-PP	Signal detect assert level for active data signal	SD_TH = Float, 0101 pattern at 8 Gbps Measured at pins		180		mVp-p
V _{RX-IDLE-DET-} DIFF-PP	Signal detect deassert level for electrical idle	SD_TH = Float, 0101 pattern at 8 Gbps Measured at pins		110		mVp-p

DS80PCI102 SNLS344G – JULY 2011–REVISED AUGUST 2015

www.ti.com

Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
HIGH SPEED C	DUTPUTS					
V _{TX-DIFF-PP}	Output voltage differential swing	Differential measurement with OUT_n+ and OUT_n- , terminated by 50 Ω to GND, AC-Coupled, VID = 1.0 Vp-p, DEMA/B = 0, VOD_SEL = Float, ⁽¹⁾	0.8	1.0	1.1	Vp-р
V _{TX-DE-} ratio_3.5	TX de-emphasis ratio	VOD = 1.0 Vp-p, DEMA/B = Float, VOD_SEL = Float, (GEN 1, 2 only)		-3.5		dB
V _{TX-DE-RATIO_6}	TX de-emphasis ratio	VOD = 1.0 Vp-p, DEMA/B = 20 k Ω to GND, VOD_SEL = Float, (GEN 1, 2 only)		-6		dB
T _{TX-RJ}	Random Ritter	VID = 800 mV, 0101 pattern, 8.0 Gbps, VOD = 1.0 V, EQ = 0x00, DE = 0 dB		0.3		ps RMS
T _{TX-DJ}	Deterministic Jitter	VID = 800 mV, PRBS15, 8.0 Gbps VOD = 1.0 V, EQ = 0x00, DE = 0 dB		0.05		Ulpp
T _{TX-RISE-FALL}	TX rise/fall time	20% to 80% of differential output voltage, ⁽²⁾	34	45		ps
T _{RF-MISMATCH}	TX rise/fall mismatch	20% to 80% of differential output voltage, ⁽²⁾		0.01		UI
		0.05 to 1.25 GHz		-16		dB
RL _{TX-DIFF}	TX Differential return loss	1.25 to 2.5 GHz		-12		dB
		2.5 to 4 GHz		-11		dB
RL _{TX-CM}	TX Common mode return loss	0.05 to 2.5 GHz		-12		dB
TX-CM	TX Common mode return 1035	2.5 to 4 GHz		-8		dB
Z _{TX-DIFF-DC}	DC differential TX impedance			100		Ω
V _{TX-CM-AC-PP}	TX AC common mode voltage	VOD = 1.0 Vp-p, DEMA/B = 0, VOD_SEL = Float, $^{(2)}$			100	mVp-p
I _{TX-SHORT}	TX short circuit current limit	Total current the transmitter can supply when shorted to VDD or GND		20		mA
V _{TX-CM-DC-} ACTIVE-IDLE- DELTA	Absolute delta of DC common mode voltage during L0 and electrical idle	(2)			100	mV
V _{TX-CM-DC-LINE-} DELTA	Absolute delta of DC common mode voltgae between TX+ and TX-	(2)			25	mV
T _{TX-IDLE-DATA}	Max time to transition to differential DATA signal after IDLE	VID = 1.0 Vp-p, 8 Gbps		3.5		ns
T _{TX-DATA-IDLE}	Max time to transition to IDLE after differential DATA signal	VID = 1.0 Vp-p, 8 Gbps		6.5		ns
T _{PLHD/PHLD}	High-to-Low and Low-to-High Differential Propagation Delay	DE = 0, EQ = 0x00, ⁽³⁾		200		ps
T _{LSK}	Lane-to-lane skew	T = 25°C, VDD = 2.5 V		25		ps
T _{PPSK}	Part-to-part propagation delay skew	T = 25°C, VDD = 2.5 V		40		ps

(1) In GEN3 mode, the output VOD level is not fixed. It will be adjusted automatically based on the VID input amplitude level. The output VOD level set by DEMA/B[1:0] in GEN3 mode is dependent on the VID level and the frequency content. The DS80PCI102 repeater in GEN3 mode is designed to be transparent, so the TX-FIR (de-emphasis) is passed to the RX to support the PCIe GEN3 handshake negotiation link training.

(2) Parameter is characterized but not tested in production.

(3) Propagation Delay measurements will change slightly based on the level of EQ selected. EQ = 0x00 will result in the shortest propagation delays.

DS80PCI102

SNLS344G -JULY 2011-REVISED AUGUST 2015

www.ti.com

NSTRUMENTS

EXAS

Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP N	IAX UNIT
EQUALIZA	TION			
DJE1	Residual deterministic jitter at 8 Gbps	35" 4mils FR4, VID = 0.8 Vp-p, PRBS15, EQ = 0x1F, DEM = 0 dB	0.14	Ulpp
DJE2	Residual deterministic jitter at 5 Gbps	35" 4mils FR4, VID = 0.8 Vp-p, PRBS15, EQ = 0x1F, DEM = 0 dB	0.1	Ulpp
DJE3	Residual deterministic jitter at 2.5 Gbps	35" 4mils FR4, VID = 0.8 Vp-p, PRBS15, EQ = 0x1F, DEM = 0 dB	0.05	Ulpp
DJE4	Residual deterministic jitter at 8 Gbps	10 meters 30-awg cable, VID = 0.8 Vp-p, PRBS15, EQ = 0x2F, DEM = 0 dB	0.16	Ulpp
DJE5	Residual deterministic jitter at 5 Gbps	10 meters 30-awg cable, VID = 0.8 Vp-p, PRBS15, EQ = 0x2F, DEM = 0 dB	0.1	Ulpp
DJE6	Residual deterministic jitter at 2.5 Gbps	10 meters 30-awg cable, VID = 0.8 Vp-p, PRBS15, EQ = 0x2F, DEM = 0 dB	0.05	Ulpp
DE-EMPH	ASIS (GEN 1&2 MODE ONLY)			
DJD1	Residual deterministic jitter at 2.5 Gbps and 5.0 Gbps	10" 4mils FR4, VID = 0.8 Vp-p, PRBS15, EQ = 0x00, VOD = 1.0 Vp-p, DEM = -3.5 dB	0.1	Ulpp
DJD2	Residual deterministic jitter at 2.5 Gbps and 5.0 Gbps	20" 4mils FR4, VID = 0.8 Vp-p, PRBS15, EQ = 0x00, VOD = 1.0 Vp-p, DEM = -9 dB	0.1	Ulpp

6.5 Electrical Characteristics — Serial Management Bus Interface

Over recommended operating supply and temperature ranges unless other specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SERIAL BU	S INTERFACE DC SPECIFICATIONS		· · · ·			
V _{IL}	Data, Clock Input Low Voltage				0.8	V
V _{IH}	Data, Clock Input High Voltage		2.1		3.6	V
I _{PULLUP}	Current Through Pullup Resistor or Current Source	High Power Specification	4			mA
V _{DD}	Nominal Bus Voltage		2.375		3.6	V
I _{LEAK-Bus}	Input Leakage Per Bus Segment	(1)	-200		200	μA
I _{LEAK-Pin}	Input Leakage Per Device Pin			-15		μA
CI	Capacitance for SDA and SCL	(1) (2)			10	pF
R _{TERM}	External Termination Resistance	Pullup $V_{DD} = 3.3 V^{(1)} (2) (3)$		2000		Ω
	pull to V _{DD} = 2.5 V ± 5% OR 3.3 V ± 10%	Pullup V _{DD} = 2.5 V ⁽¹⁾ (2) (3)		1000		Ω
SERIAL BU	S INTERFACE TIMING SPECIFICATIO	NS				
FSMB	Bus Operating Frequency	ENSMB = VDD (Slave Mode)			400	kHz
		ENSMB = FLOAT (Master Mode)	280	400	520	kHz
T _{BUF}	Bus Free Time Between Stop and Start Condition		1.3			μs
T _{HD:STA}	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.	At I _{PULLUP} , Max	0.6			μs
T _{SU:STA}	Repeated Start Condition Setup Time		0.6			μs
T _{SU:STO}	Stop Condition Setup Time		0.6			μs
T _{HD:DAT}	Data Hold Time		0			ns
T _{SU:DAT}	Data Setup Time		100			ns
T _{LOW}	Clock Low Period		1.3			μs
T _{HIGH}	Clock High Period	(4)	0.6		50	μs
t _F	Clock/Data Fall Time	(4)			300	ns
t _R	Clock/Data Rise Time	(4)			300	ns
t _{POR}	Time in which a device must be operational after power-on reset	(4) (5)			500	ms

Recommended value. (1)

(2)

Recommended maximum capacitance load per bus segment is 400 pF. Maximum termination voltage should be identical to the device supply voltage. Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 (2) (3) (4) SMBus common AC specifications for details.

Specified by Design. Parameter not tested in production. (5)

6.6 Timing Diagrams

Figure 1. CML Output and Rise and Fall Times

Figure 2. Propagation Delay Timing Diagram

Figure 3. Transmit IDLE-DATA and DATA-IDLE Response Time

Figure 4. SMBus Timing Parameters

6.7 Typical Characteristics

7 Detailed Description

7.1 Overview

The DS80PCI102 provides input CTLE and output De-emphasis equalization for lossy printed circuit board trace and cables. The DS80PCI102 operates in three modes: Pin Control Mode configuration (ENSMB = 0), SMBus Slave Mode (ENSMB = 1) for register configurations from host controller or SMBus Master Mode (ENSMB = Float) for loading the register configurations from an external EEPROM.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 4-Level Input Configuration Guidelines

The 4-level input pins use a resistor divider to help set the four valid levels. There is an internal 30-k Ω pullup and a 60-k Ω pulldown connected to the package pin. These resistors, together with the external resistor connection combine to achieve the desired voltage level. Using the 1-k Ω pullup, 1-k Ω pulldown, no connect, or 20-k Ω pulldown provide the optimal voltage levels for each of the four input states.

LEVEL	SETTING	3.3-V MODE	2.5-V MODE
0	1 kΩ to GND	0.1 V	0.08 V
R	20 kΩ to GND	0.33 × V _{IN}	0.33 × V _{DD}
F	FLOAT	0.67 × V _{IN}	$0.67 \times V_{DD}$
1	1 k Ω to V_DD/V_IN	V _{IN} – 0.05 V	$V_{DD} - 0.04 V$

Table 1. 4-Level Input Voltage

Typical 4-level input thresholds:

- Level 1 to 2 = 0.2 V_{IN} or V_{DD}
- Level 2 to 3 = 0.5 V_{IN} or V_{DD}
- Level 3 to 4 = 0.8 V_{IN} or V_{DD}

To minimize the start-up current associated with the integrated 2.5-V regulator, the 1-k Ω pullup and pulldown resistors are recommended. If several 4-level inputs require the same setting, it is possible to combine two or more 1-k Ω resistors into a single lower value resistor. As an example; combining two inputs with a single 500- Ω resistor is a good way to save board space. For the 20 k Ω to GND, this should also scale to 10 k Ω .

LEVEL	EQA1 EQB1	EQA0 EQB0	EQ – 8 BITS [7:0]	dB at 1.25 GHz	dB at 2.5 GHz	dB at 4 GHz	SUGGESTED USE
1	0	0	$0000\ 0000 = 0000$	2.1	3.7	4.9	FR4 < 5 inch trace
2	0	R	$0000\ 0001 = 0x01$	3.4	5.8	7.9	FR4 5 inch 5-mil trace
3	0	Float	0000 0010 = 0x02	4.8	7.7	9.9	FR4 5 inch 4-mil trace
4	0	1	0000 0011 = 0x03	5.9	8.9	11.0	FR4 10 inch 5-mil trace
5	R	0	0000 0111 = 0x07	7.2	11.2	14.3	FR4 10 inch 4-mil trace
6	R	R	0001 0101 = 0x15	6.1	11.4	14.6	FR4 15 inch 4-mil trace
7	R	Float	0000 1011 = 0x0B	8.8	13.5	17.0	FR4 20 inch 4-mil trace
8	R	1	0000 1111 = 0x0F	10.2	15.0	18.5	FR4 25 to 30 inch 4-mil trace
9	Float	0	0101 0101 = 0x55	7.5	12.8	18.0	FR4 30 inch 4-mil trace
10	Float	R	0001 1111 = 0x1F	11.4	17.4	22.0	FR4 35 inch 4-mil trace
11	Float	Float	0010 1111 = 0x2F	13.0	19.7	24.4	10 m, 30-awg cable
12	Float	1	0011 1111 = 0x3F	14.2	21.1	25.8	
13	1	0	1010 1010 = 0xAA	13.8	21.7	27.4	
14	1	R	0111 1111 = 0x7F	15.6	23.5	29.0	10 m – 12 m cable
15	1	Float	1011 1111 = 0xBF	17.2	25.8	31.4	
16	1	1	1111 1111 = 0xFF	18.4	27.3	32.7	

Table 2. Equalizer Settings⁽¹⁾

(1) The suggested equalizer CTLE settings are based on 0 dB of TX preshoot/de-emphasis. In PCIe Gen 3 applications which use TX preshoot/de-emphasis, the CTLE should be set to a lower boost setting to optimize the RX eye opening.

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

Table 3. Output Voltage and De-Emphasis Settings										
LEVEL	VOD_SEL	DEMA DEMB	VOD (Vp-p)	DEM (dB) ⁽¹⁾	SUGGESTED USE					
1	0	0	0.7	0	FR4 < 5 inch 4-mil trace					
2	0	R	0.7	- 6	FR4 12 inch 4-mil trace					
3	0	Float	0.7	- 3.5	FR4 10 inch 4-mil trace					
4	0	1	0.7	- 9	FR4 15 inch 4-mil trace					
5	R	0	1.2	0	FR4 < 5 inch 4-mil trace					
6	R	R	1.2	- 6	FR4 12 inch 4-mil trace					
7	R	Float	1.2	- 3.5	FR4 10 inch 4-mil trace					
8	R	1	1.2	- 9	FR4 15 inch 4-mil trace					
9	Float	0	1.0	0	FR4 < 5 inch 4-mil trace					
10	Float	R	1.0	- 6	FR4 15 inch 4-mil trace					
11	Float	Float	1.0	- 3.5	FR4 10 inch 4-mil trace					
12	Float	1	1.0	- 9	FR4 20 inch 4-mil trace					
13	1	0	1.1	0	FR4 < 5 inch 4-mil trace					
14	1	R	1.1	- 1.5	FR4 5 inch 4-mil trace					
15	1	Float	1.3	- 1.5	FR4 5 inch 4-mil trace					
16	1	1	1.3	- 3.5	FR4 10 inch 4-mil trace					

Table 3. Output Voltage and De-Emphasis Settings

(1) The VOD output amplitude and DEM de-emphasis levels are set with the DEMA/B[1:0] pins. The de-emphasis levels are available in GEN1, GEN2, and GEN 3 modes when RATE = Float.

Table 4. RX-Detect Settings

PRSNT ⁽¹⁾ (PIN 52)	RXDET (PIN 22)	SMBus REG BIT[3:2]	INPUT TERMINATION	COMMENTS
0	0	00	Hi-Z	Manual RX-Detect, input is high-impedance mode
0	Tie 20 kΩ to GND	01	Pre Detect: Hi-Z Post Detect: 50 Ω	Auto RX-Detect, outputs test every 12 ms for 600 ms then stops; termination is hi-Z until detection; once detected input termination is 50 Ω Reset function by pulsing PRSNT high for 5 µs then low again
0	Float (Default)	10	Pre Detect: Hi-Z Post Detect: 50 Ω	Auto RX-Detect, outputs test every 12 ms until detection occurs; termination is hi-Z until detection; once detected input termination is 50 Ω Reset function by pulsing PRSNT high for 5 µs then low again
0	1	11	50 Ω	Manual RX-Detect, input is 50 Ω
1	Х		Hi-Z	Power-down mode, input is high impedance, output drivers are disabled
				Used to reset RX-Detect State Machine when held high for 5 $\ensuremath{\mu s}$

(1) In SMBus Slave Mode, the Rx Detect State Machine can be manually reset in software by overriding the device PRSNT function. This is accomplished by setting the Override RXDET bit (Reg 0x02[7]) and then toggling the RXDET Value bit (Reg 0x02[6]). See Table 10 for more information about resetting the Rx Detect State Machine.

Table 5. Signal Detect Threshold Level⁽¹⁾

SD_TH	SMBus REG BIT [3:2] AND [1:0]	ASSERT LEVEL (TYP)	DEASSERT LEVEL (TYP)
0	10	210 mVp-p	150 mVp-p
R	01	160 mVp-p	100 mVp-p
F (default)	00	180 mVp-p	110 mVp-p
1	11	190 mVp-p	130 mVp-p

(1) VDD = 2.5 V, 25°C, and 0101 pattern at 8 Gbps.

www.ti.com

7.4 Device Functional Modes

The DS80PCI102 is a low power media compensation 1 lane repeater optimized for PCI Express Gen 1/2 and 3. The DS80PCI102 compensates for lossy FR-4 printed circuit board backplanes and balanced cables. The DS80PCI102 operates in 3 modes: Pin Control Mode (ENSMB = 0), SMBus Slave Mode (ENSMB = 1) and SMBus Master Mode (ENSMB = float) to load register information from external EEPROM; refer to Table 8 for additional information.

7.4.1 Pin Control Mode

When in pin mode (ENSMB = 0), equalization and de-emphasis can be selected through pin for each side independently. When de-emphasis is asserted VOD is automatically adjusted per the De- Emphasis table below. The RXDET pins provides automatic and manual control for input termination (50 Ω or > 50 k Ω). RATE setting is also pin controllable with pin selections (Gen 1/2, auto detect and Gen 3). The receiver electrical idle detect threshold is also adjustable through the SD_TH pin.

7.4.2 SMBUS Mode

When in SMBus mode (ENSMB = 1), the VOD (output amplitude), equalization, de-emphasis, and termination disable features are all programmable on a individual lane basis, instead of grouped by A or B as in the pin mode case. Upon assertion of ENSMB, the EQx and DEMx functions revert to register control immediately. The EQx and DEMx pins are converted to AD0-AD3 SMBus address inputs. The other external control pins (RATE, RXDET and SD_TH) remain active unless their respective registers are written to and the appropriate override bit is set, in which case they are ignored until ENSMB is driven low (pin mode). On power-up and when ENSMB is driven low all registers are reset to their default state. If PRSNT is asserted while ENSMB is high, the registers retain their current state.

Equalization settings accessible through the pin controls were chosen to meet the needs of most PCIe applications. If additional fine tuning or adjustment is needed, additional equalization settings can be accessed through the SMBus registers. Each input has a total of 256 possible equalization settings. The *4-Level Input Configuration Guidelines* show the 16 setting when the device is in pin mode. When using SMBus mode, the equalization, VOD and de-emphasis levels are set by registers.

7.5 Programming

7.5.1 System Management Bus (SMBus) and Configuration Registers

The System Management Bus interface is compatible to SMBus 2.0 physical layer specification. ENSMB = 1 k Ω to VDD to enable SMBus slave mode and allow access to the configuration registers.

The DS80PCI102 has the AD[3:0] inputs in SMBus mode. These pins are the user set SMBUS slave address inputs. The AD[3:0] pins have internal pulldown. When left floating or pulled low the AD[3:0] = 0000'b, the device default address byte is 0xB0. Based on the SMBus 2.0 specification, the DS80PCI102 has a 7-bit slave address. The LSB is set to 0'b (for a WRITE). The device supports up to 16 address byte, which can be set with the AD[3:0] inputs. Below are the 16 addresses.

AD[3:0] SETTINGS	ADDRESS BYTES (HEX)	7-BIT SLAVE ADDRESS (HEX)
0000	B0	58
0001	B2	59
0010	B4	5A
0011	B6	5B
0100	B8	5C
0101	BA	5D
0110	BC	5E
0111	BE	5F
1000	C0	60
1001	C2	61
1010	C4	62
1011	C6	63
1100	C8	64
1101	CA	65
1110	CC	66
1111	CE	67

Table 6. Device Slave Address Bytes

The SDA/SCL pins are 3.3-V tolerant, but are not 5-V tolerant. An external pullup resistor is required on the SDA and SCL line. The resistor value can be from 2 k Ω to 5 k Ω depending on the voltage, loading, and speed.

7.5.2 Transfer of Data Through the SMBus

During normal operation the data on SDA must be stable during the time when SCL is High.

There are three unique states for the SMBus:

START: A high-to-low transition on SDA while SCL is High indicates a message START condition.

STOP: A low-to-high transition on SDA while SCL is High indicates a message STOP condition.

IDLE: If SCL and SDA are both High for a time exceeding t_{BUF} from the last detected STOP condition or if they are High for a total exceeding the maximum specification for t_{HIGH} then the bus will transfer to the IDLE state.

7.5.3 SMBus Transactions

The device supports WRITE and READ transactions. See Table 10 for register address, type (Read/Write, Read Only), default value and function information.

7.5.4 Writing a Register

To write a register, the following protocol is used (see SMBus 2.0 specification).

- 1. The Host drives a START condition, the 7-bit SMBus address, and a 0 indicating a WRITE.
- 2. The Device (Slave) drives the ACK bit (0).
- 3. The Host drives the 8-bit Register Address.
- 4. The Device drives an ACK bit (0).
- 5. The Host drive the 8-bit data byte.
- 6. The Device drives an ACK bit (0).
- 7. The Host drives a STOP condition.

The WRITE transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.

7.5.5 Reading a Register

To read a register, the following protocol is used (see SMBus 2.0 specification).

- 1. The Host drives a START condition, the 7-bit SMBus address, and a 0 indicating a WRITE.
- 2. The Device (Slave) drives the ACK bit (0).
- 3. The Host drives the 8-bit Register Address.
- 4. The Device drives an ACK bit (0).
- 5. The Host drives a START condition.
- 6. The Host drives the 7-bit SMBus Address, and a 1 indicating a READ.
- 7. The Device drives an ACK bit 0.
- 8. The Device drives the 8-bit data value (register contents).
- 9. The Host drives a NACK bit 1 indicating end of the READ transfer.
- 10. The Host drives a STOP condition.

The READ transaction is completed, the bus goes IDLE and communication with other SMBus devices may now occur.

See Table 10 for more information.

Figure 7. Typical SMBus Write Operation

7.5.6 EEPROM Programming

The DS80PCI102 supports reading directly from an external EEPROM device by implementing SMBus Master mode. When using the SMBus master mode, the DS80PCI102 will read directly from specific location in the external EEPROM. When designing a system for using the external EEPROM, the following guidelines should be followed:

- Set the DS80PCI102 into SMBus Master Mode.
 - ENSMB (PIN 3) = Float
- The external EEPROM device must support 1-MHz operation.
- The external EEPROM device address byte must be 0xA0.
- Set the AD[3:0] inputs for SMBus address byte. When the AD[3:0] = 0000'b, the device address byte is 0xB0.
- The device address can be set with the use of the AD[3:0] input up to 16 different addresses. Use the example below to set each of the SMBus addresses.
 - AD[3:0] = 0001'b, the device address byte is 0xB2
 - AD[3:0] = 0010'b, the device address byte is 0xB4
 - AD[3:0] = 0011'b, the device address byte is 0xB6

SNLS344G – JULY 2011 – REVISED AUGUST 2015

www.ti.com

- AD[3:0] = 0100'b, the device address byte is 0xB8
- The master implementation in the DS80PCI102 supports multiple devices reading from one EEPROM. When tying multiple devices to the SDA and SCL pins, use these guidelines:
 - Use adjacent SMBus addresses for the 4 devices
 - Use a pullup resistor on SDA; value = 4.7 kΩ
 - Use a pullup resistor on SCL; value = 4.7 k Ω
 - Daisy-chain READEN (Pin 17) and DONE (Pin18) from one device to the next device in the sequence.
 - 1. Tie READEN of the first device in the chain (U1) to GND
 - 2. Tie DONE of U1 to READEN of U2
 - 3. Tie DONE of U2 to READEN of U3
 - 4. Tie DONE of U3 to READEN of U4
 - 5. Optional: Tie DONE of U4 to a LED to show each of the devices have been loaded successfully

7.5.6.1 Master EEPROM Programming

The following example represents a 2 kbits (256×8 -bit) EEPROM in hex format for the DS80PCI102 device. The first 3 bytes of the EEPROM always contain a header common and necessary to control initialization of all devices connected to the same SMBus line. There is a CRC enable flag to enable or disable CRC checking. There is a MAP bit to flag the presence of an address map that specifies the configuration data start in the EEPROM. If the MAP bit is not present, the configuration data start address immediately follows the 3-byte base header. A bit to indicate an EEPROM size > 256 bytes is necessary to properly address the EEPROM. There are 37 bytes of data size for each DS80PCI102 device. For more details about EEPROM programming and Master mode, refer to SNLA228.

Figure 8. Typical EEPROM Data Set

NOTE

The maximum EEPROM size supported is 8kbits (1024 \times 8 bits).

The CRC-8 calculation is performed on the first 3 bytes of header information plus the 37 bytes of data for the DS80PCI102, or 40 bytes in total. The result of this calculation is placed immediately after the DS80PCI102 data in the EEPROM, which ends with "5454". The CRC-8 in the DS80PCI102 uses a polynomial = $x^8 + x^2 + x + 1$.

There are two pins that provide unique functions in SMBus Master mode:

- DONE
- READEN

When the DS80PCI102 is powered up in SMBus master mode, it reads its configuration from the external EEPROM when the READEN pin goes low. When the DS80PCI102 is finished reading its configuration from the external EEPROM, it drives the DONE pin low. In applications where there is more than one DS80PCI102 on the same SMBus, bus contention can result if more than one DS80PCI102 tries to take control of the SMBus at the same time. The READEN and DONE pins prevent this bus contention. The system should be designed so that the READEN pin from one DS80PCI102 in the system is driven low on power-up. This DS80PCI102 will take command of the SMBus on power-up and will read its initial configuration from the external EEPROM. When it is finished reading its configuration, it will drive the DONE pin low. This pin should be connected to the READEN pin of another DS80PCI102. When this second DS80PCI102 senses its READEN pin driven low, it will take command of the SMBus and read its initial configuration from the external EEPROM, after which it will set its DONE pin low. By connecting the DONE pin of each DS80PCI102 to the READEN pin of the next DS80PCI102, each DS80PCI102 can read its initial configuration from the EEPROM without causing bus contention.

Figure 9. Typical Multi-Device EEPROM Connection Diagram

7.5.6.2 EEPROM Address Mapping

A detailed EEPROM Address Mapping for a single device is shown in Table 7. For instances where multiple devices are written to EEPROM, the device starting address definitions align starting with Byte 0x03. A register map overview for a multi-device EEPROM address map is shown in Table 8.

7.6 Register Maps

EEPROM /	Address	Byte	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Description	l	0x00	CRC_EN	Address Map Present	EEPROM > 256 Bytes	Reserved	DEVICE COUNT[3]	DEVICE COUNT[2]	DEVICE COUNT[1]	DEVICE COUNT[0]
Default Value	0x00	0x00	0	0	0	0	0	0	0	0
Description	1		Reserved							
Default Value	0x00	0x01	0	0	0	0	0	0	0	0
Description	I	0x02	Max EEPROM Burst size[7]	Max EEPROM Burst size[6]	Max EEPROM Burst size[5]	Max EEPROM Burst size[4]	Max EEPROM Burst size[3]	Max EEPROM Burst size[2]	Max EEPROM Burst size[1]	Max EEPROM Burst size[0]
Default Value	0x00	0x02	0	0	0	0	0	0	0	0
Description	1		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PWDN CH B	PWDN CH A
SMBus Reg	gister	0x03	0x01[7]	0x01[6]	0x01[5]	0x01[4]	0x01[3]	0x01[2]	0x01[1]	0x01[0]
Default Value	0x00		0	0	0	0	0	0	0	0
Description	I		Reserved	Reserved	PWDN_Inputs	PWDN_Osc	Override PRST	Reserved	Reserved	Reserved
SMBus Reg	gister	0x04	0x02[5]	0x02[4]	0x02[3]	0x02[2]	0x02[0]	0x04[7]	0x04[6]	0x04[5]
Default Value	0x00	0.001	0	0	0	0	0	0	0	0
Description	1		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Ovrd IDLE_TH	Reserved
SMBus Reg	gister	0x05	0x04[4]	0x04[3]	0x04[2]	0x04[1]	0x04[0]	0x06[4]	0x08[6]	0x08[5]
Default Value	0x04	0,000	0	0	0	0	0	1	0	0
Description	1		Reserved	Ovrd RXDET	Ovrd RATE	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x06	0x08[4]	0x08[3]	0x08[2]	0x08[1]	0x08[0]	0x0B[6]	0x0B[5]	0x0B[4]
Default Value	0x07		0	0	0	0	0	1	1	1
Description	1		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	RXDET_A_1	RXDET_A_0
SMBus Reg	gister	0x07	0x0B[3]	0x0B[2]	0x0B[1]	0x0B[0]	0x0E[5]	0x0E[4]	0x0E[3]	0x0E[2]
Default Value	0x00		0	0	0	0	0	0	0	0

Table 7. Single Device with Default Value

EEPROM Address Byte		Byte	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Description			CHA_EQ[7]	CHA_EQ[6]	CHA_EQ[5]	CHA_EQ[4]	CHA_EQ[3]	CHA_EQ[2]	CH0_EQ[1]	CH0_EQ[0]
SMBus Reg	gister	0x08	0x0F[7]	0x0F[6]	0x0F[5]	0x0F[4]	0x0F[3]	0x0F[2]	0x0F[1]	0x0F[0]
Default Value	0x2F	0,00	0	0	1	0	1	1	1	1
Description			CHA_Sel SCP	CHA_Sel RATE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x09	0x10[7]	0x10[6]	0x10[5]	0x10[4]	0x10[3]	0x10[2]	0x10[1]	0x10[0]
Default Value	0xED	0,00	1	1	1	0	1	1	0	1
Description			CHA_DEM[2]	CHA_DEM[1]	CHA_DEM[0]	Reserved	CHA_Idle_ThA[1]	CHA_Idle_ThA[0]	CHA_Idle_ThD[1]	CHA_Idle_ThD[0]
SMBus Reg	gister	0x0A	0x11[2]	0x11[1]	0x11[0]	0x12[7]	0x12[3]	0x12[2]	0x12[1]	0x12[0]
Default Value	0x40	0,0,1	0	1	0	0	0	0	0	0
Description	Description		Reserved	Reserved	RXDET_B_1	RXDET_B_0	CHB_EQ[7]	CHB_EQ[6]	CHB_EQ[5]	CHB_EQ[4]
SMBus Reg	gister	0x0B	0x15[5]	0x15[4]	0x15[3]	0x15[2]	0x16[7]	0x16[6]	0x16[5]	0x16[4]
Default Value	0x02	0X0B	0	0	0	0	0	0	1	0
Description			CHB_EQ[3]	CHB_EQ[2]	CHB_EQ[1]	CHB_EQ[0]	CHB_Sel SCP	CHB_Sel RATE	Reserved	Reserved
SMBus Reg	gister	0x0C	0x16[3]	0x16[2]	0x16[1]	0x16[0]	0x17[7]	0x17[6]	0x17[5]	0x17[4]
Default Value	0xFE	ene e	1	1	1	1	1	1	1	0
Description			Reserved	Reserved	Reserved	Reserved	CHB_DEM[2]	CHB_DEM[1]	CHB_DEM[0]	Reserved
SMBus Reg	gister	0x0D	0x17[3]	0x17[2]	0x17[1]	0x17[0]	0x18[2]	0x18[1]	0x18[0]	0x19[7]
Default Value	0xD4	6X0D	1	1	0	1	0	1	0	0
Description			CHB_Idle_ThA[1]	CHB_Idle_ThA[0]	CHB_Idle_ThD[1]	CHB_Idle_ThD[0]	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x0E	0x19[3]	0x19[2]	0x19[1]	0x19[0]	0x1C[5]	0x1C[4]	0x1C[3]	0x1C[2]
Default Value	0x00	UXUL	0	0	0	0	0	0	0	0
Description			Reserved							
SMBus Register		0x0F	0x1D[7]	0x1D[6]	0x1D[5]	0x1D[4]	0x1D[3]	0x1D[2]	0x1D[1]	0x1D[0]
Default Value	0x2F	0,01	0	0	1	0	1	1	1	1

DS80PCI102

SNLS344G –JULY 2011-REVISED AUGUST 2015

www.ti.com

EEPROM Address Byte		Byte	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x10	0x1E[7]	0x1E[6]	0x1E[5]	0x1E[4]	0x1E[3]	0x1E[2]	0x1E[1]	0x1E[0]
Default Value	0xAD	0,10	1	0	1	0	1	1	0	1
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x11	0x1F[2]	0x1F[1]	0x1F[0]	0x20[7]	0x20[3]	0x20[2]	0x20[1]	0x20[0]
Default Value	0x40		0	1	0	0	0	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x12	0x23[5]	0x23[4]	0x23[3]	0x23[2]	0x24[7]	0x24[6]	0x24[5]	0x24[4]
Default Value	0x02	0712	0	0	0	0	0	0	1	0
Description	escription		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CHA_VOD[2]
SMBus Reg	gister	0x13	0x24[3]	0x24[2]	0x24[1]	0x24[0]	0x25[7]	0x25[6]	0x25[5]	0x25[4]
Default Value	0xFA	0.15	1	1	1	1	1	0	1	0
Description			CHA_VOD[1]	CHA_VOD[0]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x14	0x25[3]	0x25[2]	0x25[1]	0x25[0]	0x26[2]	0x26[1]	0x26[0]	0x27[7]
Default √alue	0xD4	UXT I	1	1	0	1	0	1	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x15	0x27[3]	0x27[2]	0x27[1]	0x27[0]	0x28[6]	0x28[5]	0x28[4]	0x28[3]
Default Value	0x00	0,10	0	0	0	0	0	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x16	0x28[2]	0x28[1]	0x28[0]	0x2B[5]	0x2B[4]	0x2B[3]	0x2B[2]	0x2C[7]
Default ∕alue	0x00	UX16	0	0	0	0	0	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Register		0x17	0x2C[6]	0x2C[5]	0x2C[4]	0x2C[3]	0x2C[2]	0x2C[1]	0x2C[0]	0x2D[7]
Default Value	0x5F	5717	0	1	0	1	1	1	1	1

EEPROM Address Byte		BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
Description			Reserved	Reserved	CHB_VOD[2]	CHB_VOD[1]	CHB_VOD[0]	Reserved	Reserved	Reserved
MBus Reg	gister	0x18	0x2D[6]	0x2D[5]	0x2D[4]	0x2D[3]	0x2D[2]	0x2D[1]	0x2D[0]	0x2E[2]
Default /alue	0x5A	ente	0	1	0	1	1	0	1	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
MBus Reg	gister	0x19	0x2E[1]	0x2E[0]	0x2F[7]	0x2F[3]	0x2F[2]	0x2F[1]	0x2F[0]	0x32[5]
)efault ′alue	0x80		1	0	0	0	0	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
MBus Reg	gister	0x1A	0x32[4]	0x32[3]	0x32[2]	0x33[7]	0x33[6]	0x33[5]	0x33[4]	0x33[3]
Default /alue	0x05	UX II Y	0	0	0	0	0	1	0	1
Description	1		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x1B	0x33[2]	0x33[1]	0x33[0]	0x34[7]	0x34[6]	0x34[5]	0x34[4]	0x34[3]
Default /alue	0xF5	UX I D	1	1	1	1	0	1	0	1
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x1C	0x34[2]	0x34[1]	0x34[0]	0x35[2]	0x35[1]	0x35[0]	0x36[7]	0x36[3]
Default ∕alue	0xA8	UX I U	1	0	1	0	1	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x1D	0x36[2]	0x36[1]	0x36[0]	0x39[5]	0x39[4]	0x39[3]	0x39[2]	0x3A[7]
Default ∕alue	0x00	UX I D	0	0	0	0	0	0	0	0
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	-		0x3A[6]	0x3A[5]	0x3A[4]	0x3A[3]	0x3A[2]	0x3A[1]	0x3A[0]	0x3B[7]
Default ∕alue	0x5F	OATE	0	1	0	1	1	1	1	1
Description			Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
SMBus Reg	gister	0x1F	0x3B[6]	0x3B[5]	0x3B[4]	0x3B[3]	0x3B[2]	0x3B[1]	0x3B[0]	0x3C[2]
Default ∕alue	0x5A	5,11	0	1	0	1	1	0	1	0

DS80PCI102

SNLS344G –JULY 2011-REVISED AUGUST 2015

www.ti.com

EEPROM Address Byte		s Byte	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Description			Reserved							
SMBus Reo	gister	0x20	0x3C[1]	0x3C[0]	0x3D[7]	0x3D[3]	0x3D[2]	0x3D[1]	0x3D[0]	0x40[5]
Default Value	0x80	0,20	1	0	0	0	0	0	0	0
Description			Reserved							
SMBus Re	gister	0x21	0x40[4]	0x40[3]	0x40[2]	0x41[7]	0x41[6]	0x41[5]	0x41[4]	0x41[3]
Default Value	0x05	UNE I	0	0	0	0	0	1	0	1
Description			Reserved							
SMBus Reg	gister	0x22	0x41[2]	0x41[1]	0x41[0]	0x42[7]	0x42[6]	0x42[5]	0x42[4]	0x42[3]
Default Value	0xF5	UNEE	1	1	1	1	0	1	0	1
Description			Reserved							
SMBus Reg	gister	0x23	0x42[2]	0x42[1]	0x42[0]	0x43[2]	0x43[1]	0x43[0]	0x44[7]	0x44[3]
Default √alue	0xA8	0,20	1	0	1	0	1	0	0	0
Description			Reserved							
SMBus Reo	gister	0x24	0x44[2]	0x44[1]	0x44[0]	0x47[3]	0x47[2]	0x47[1]	0x47[0]	0x48[7]
Default √alue	0x00	UNE I	0	0	0	0	0	0	0	0
Description			Reserved							
SMBus Re	gister	0x25	0x48[6]	0x4C[7]	0x4C[6]	0x4C[5]	0x4C[4]	0x4C[3]	0x4C[0]	0x59[0]
Default √alue	0x00	UNEU	0	0	0	0	0	0	0	0
Description			Reserved							
SMBus Reg	gister	0x26	0x5A[7]	0x5A[6]	0x5A[5]	0x5A[4]	0x5A[3]	0x5A[2]	0x5A[1]	0x5A[0]
Default ∕alue	0x54	0,20	0	1	0	1	0	1	0	0
Description			Reserved							
SMBus Reg		0x27	0x5B[7]	0x5B[6]	0x5B[5]	0x5B[4]	0x5B[3]	0x5B[2]	0x5B[1]	0x5B[0]
Default Value	0x54	0,21	0	1	0	1	0	1	0	0

Table 8. Multi-Device EEPROM Register Map	Overview ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾
---	----------------------------------

	Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Blt 0
	0	CRC EN	Address Map	EEPROM > 256 Bytes	Reserved	COUNT[3]	COUNT[2]	COUNT[1]	COUNT[0]
Header	1	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	2	EE Burst[7]	EE Burst[6]	EE Burst[5]	EE Burst[4]	EE Burst[3]	EE Burst[2]	EE Burst[1]	EE Burst[0]
Device 0	3	CRC[7]	CRC[6]	CRC[5]	CRC[4]	CRC[3]	CRC[2]	CRC[1]	CRC[0]
Info	4	EE AD0 [7]	EE AD0 [6]	EE AD0 [5]	EE AD0 [4]	EE AD0 [3]	EE AD0 [2]	EE AD0 [1]	EE AD0 [0]
Device 1	5	CRC[7]	CRC[6]	CRC[5]	CRC[4]	CRC[3]	CRC[2]	CRC[1]	CRC[0]
Info	6	EE AD1 [7]	EE AD1 [6]	EE AD1 [5]	EE AD1 [4]	EE AD1 [3]	EE AD1 [2]	EE AD1 [1]	EE AD1 [0]
Device 2	7	CRC[7]	CRC[6]	CRC[5]	CRC[4]	CRC[3]	CRC[2]	CRC[1]	CRC[0]
Info	8	EE AD2 [7]	EE AD2 [6]	EE AD2 [5]	EE AD2 [4]	EE AD2 [3]	EE AD2 [2]	EE AD2 [1]	EE AD2 [0]
Device 3	9	CRC[7]	CRC[6]	CRC[5]	CRC[4]	CRC[3]	CRC[2]	CRC[1]	CRC[0]
Info 10	10	EE AD3 [7]	EE AD3 [6]	EE AD3 [5]	EE AD3 [4]	EE AD3 [3]	EE AD3 [2]	EE AD3 [1]	EE AD3 [0]
Device 0 Addr 3	11	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PWDN CH B	PWDN CH A
Device 0 Addr 4	12	Reserved	Reserved	PDWN Inp	PDWN OSC	Ovrd PRST	Reserved	Reserved	Reserved
Device 0 Addr 38	46	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 0 Addr 39	47	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 1 Addr 3	48	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PWDN CH B	PWDN CH A
Device 1 Addr 4	49	Reserved	Reserved	PDWN Inp	PDWN OSC	Ovrd PRST	Reserved	Reserved	Reserved
Device 1 Addr 38	83	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 1 Addr 39	84	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 2 Addr 3	85	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PWDN CH B	PWDN CH A
Device 2 Addr 4	86	Reserved	Reserved	PDWN Inp	PDWN OSC	Ovrd PRST	Reserved	Reserved	Reserved

(1) CRC EN = 1; Address Map = 1
 (2) EEPROM > 256 Bytes = 0
 (3) COUNT[3:0] = 0011'b

(4) Multiple DS80PCI102 devices may point at the same address space if they have identical programming values.

Copyright © 2011–2015, Texas Instruments Incorporated

Texas Instruments

Table 8. Multi-Device EEPROM Register Map Overview⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (continued)

	Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Blt 0
Device 2 Addr 38	120	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 2 Addr 39	121	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 3 Addr 3	122	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	PWDN CH B	PWDN CH A
Device 3 Addr 4	123	Reserved	Reserved	PDWN Inp	PDWN OSC	Ovrd PRST	Reserved	Reserved	Reserved
Device 3 Addr 38	157	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Device 3 Addr 39	158	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

www.ti.com

Table 9. Multi DS80PCI102 EEPROM Data

EEPROM Address	Address (Hex)	EEPROM Data	Comments
0	00	0x43	CRC_EN = 0, Address Map = 1, Device Count = 3 (Devices 0, 1, 2, and 3)
1	01	0x00	
2	02	0x08	EEPROM Burst Size
3	03	0x00	CRC not used
4	04	0x0B	Device 0 Address Location
5	05	0x00	CRC not used
6	06	0x30	Device 1 Address Location
7	07	0x00	CRC not used
8	08	0x30	Device 2 Address Location
9	09	0x00	CRC not used
10	0A	0x0B	Device 3 Address Location
11	0B	0x00	Begin Device 0 and Device 3 - Address Offset 3
12	0C	0x00	
13	0D	0x04	
14	0E	0x07	
15	0F	0x00	
16	10	0x2F	Default EQ CHA
17	11	0xED	
18	12	0x40	
19	13	0x02	Default EQ CHB
20	14	0xFE	Default EQ CHB
21	15	0xD4	
22	16	0x00	
23	17	0x2F	
24	18	0xAD	
25	19	0x40	
26	1A	0x02	
27	1B	0xFA	PCI102 CHA VOD = 1000 mVpp
28	1C	0xD4	PCI102 CHA VOD = 1000 mVpp
29	1D	0x01	
30	1E	0x80	
31	1F	0x5F	
32	20	0x56	PCI102 CHB VOD = 1000 mVpp
	21	0x80	
	22	0x05	
35	23	0xF5	
36	24	0xA8	
	25	0x00	
38	26	0x5F	
39	27	0x5A	
40	28	0x80	
41	29	0x05	
42	2A	0xF5	
43	2B	0xA8	
	2C	0x00	
45	2D	0x00	
46	2E	0x54	

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

TEXAS INSTRUMENTS

www.ti.com

Table 9. Multi DS80PCI102 EEPROM Data (continued)

EEPROM Address	Address (Hex)	EEPROM Data	Comments
47	2F	0x54	End Device 0 and Device 3 - Address Offset 39
48	30	0x00	Begin Device 1 and Device 2 - Address Offset 3
49	31	0x00	
50	32	0x04	
51	33	0x07	
52	34	0x00	
53	35	0x2F	Default EQ CHA
54	36	0xED	
55	37	0x40	
56	38	0x02	Default EQ CHB
57	39	0xFE	Default EQ CHB
58	3A	0xD4	
59	3B	0x00	
60	3C	0x2F	
61	3D	0xAD	
62	3E	0x40	
63	3F	0x02	
64	40	0xFA	PCI102 CHA VOD = 1000 mVpp
65	41	0xD4	PCI102 CHA VOD = 1000 mVpp
66	42	0x01	
67	43	0x80	
68	44	0x5F	
69	45	0x56	PCI102 CHB VOD = 1000 mVpp
70	46	0x80	
71	47	0x05	
72	48	0xF5	
73	49	0xA8	
74	4A	0x00	
75	4B	0x5F	
76	4C	0x5A	
77	4D	0x80	
78	4E	0x05	
79	4F	0xF5	
80	50	0xA8	
81	51	0x00	
82	52	0x00	
83	53	0x54	
84	54	0x54	End Device 1 and Device 2 - Address Offset 39

DS80PCI102 SNLS344G – JULY 2011–REVISED AUGUST 2015

Table 10. SMBus Register Map

Address	Register Name	Bit	Field	Туре	Default	EEPROM Bit	Description
		7	Reserved	R/W			Reserved
	Device Address Observation	6:3	I2C Address [3:0]	R			SMBus strap observation
0x00		2	EEPROM reading done	R	0x00		1: Device completed the read from external EEPROM
	Observation	1	Reserved	RWSC			Reserved
		0	Reserved	RWSC			Reserved
		7:2	Reserved				Reserved
0x01	Control 1	1:0	PWDN A/B	R/W	0x00	Yes	[1]: Powerdown Channel B (1); Normal Operation (0)[0]: Powerdown Channel A (1); Normal Operation (0)
		7	Override RXDET	_			1 = Override Automatic Rx Detect State Machine Reset
		6	RXDET Value	_	0x00		1 = Set Rx Detect State Machine Reset 0 = Clear Rx Detect State Machine Reset
000		5:4	Reserved	DAA		Yes	Reserved
0x02	Control 2	3	PWDN Inputs	R/W		Yes	Reserved
		2	PWDN Oscillator	_		Yes	Reserved
		1	Reserved	_			Reserved
		0	Override PRSNT			Yes	1: Enables Reg 0x01[1:0] 0: Normal Operation
0x03	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x04	Reserved	7:0	Reserved	R/W	0x00	Yes	Reserved
0x05	Reserved	7:0	Reserved	R/W	0x00		Reserved
	Slave Register Control	7:5	Reserved				Reserved
		4	Reserved	_		Yes	Reserved
0x06		3	Register Enable	R/W	0x10		1 = Enables SMBus Slave Mode Register Control Note: To change VOD, DEM, and EQ of the channels in slave mode, this bit must be set to 1.
		2:0	Reserved				Reserved
		7	Reserved				Reserved
0x07	Digital Reset and Control	6	Reset Regs	R/W	0x01		Self clearing reset for registers. Writing a [1] will return register settings to default values.
		5	Reset SMBus Master				Self clearing reset to SMBus master state machine
		4:0	Reserved				Reserved
		7	Reserved				Reserved
		6	Override Idle Threshold			Yes	[1]: Override by Channel - see Reg 0x12 and 0x19 [0]: SD_TH pin control
		5:4	Reserved			Yes	Set bits to 0
0x08	Pin Override	3	Override RXDET	R/W	0x00	Yes	[1]: Force RXDET by Channel - see Reg 0x0E and 0x15[0]: Normal Operation
		2	Override RATE			Yes	[1]: Override by Channel - see Reg 0x10 and 0x17[0]: Normal Operation
		1:0	Reserved			Yes	Reserved
0x09	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x0A	Reserved	7:0	Reserved	R	0x00		Reserved

Copyright © 2011–2015, Texas Instruments Incorporated

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

TEXAS INSTRUMENTS

www.ti.com

Table 10. SMBus Register Map (continued	I)
---	----

Address	Register Name	Bit	Field	Туре	Default	EEPROM Bit	Description
00D	December	7	Reserved	R/W	070		Reserved
0x0B	Reserved	6:0	Reserved	R/W	0x70	Yes	Reserved
0x0C	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x0D	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
		5:4	Reserved		0x00	Yes	Reserved
0x0E	CH A RXDET Control	3:2	RXDET	R/W		Yes	00: Input is hi-Z impedance 01: Auto RX-Detect, outputs test every 12 ms for 600 ms (50 times) then stops; termination is hi-Z until detection; once detected input termination is 50 Ω 10: Auto RX-Detect, outputs test every 12 ms until detection occurs; termination is hi-Z until detection; once detected input termination is 50 Ω 11: Input is 50 Ω Note: override RXDET pin.
		1:0	Reserved				Reserved
0x0F	CH A EQ Control	7:0	BOOST [7:0]	R/W	0x2F	Yes	EQ Control - total of 256 levels See Table 2
		7	Sel_scp			Yes	1 = Short Circuit Protection ON 0 = Short Circuit Protection OFF
0x10	CH A RATE	6	Sel_RATE	R/W	0xED	Yes	1 = Select GEN1/2 Mode 0 = Select GEN3 Mode
	Control	5:3	Reserved			Yes	Reserved
		2:0	Reserved			Yes	Reserved
		7	Reserved				Reserved
		6:5	Rate Information	R			Signal Rate Detected 00 = GEN1 (2.5G) 01 = GEN2 (5.0G) 11 = GEN3 (8.0G)
		4:3	Reserved				Reserved
0x11	CH A DEM Control	2:0	DEM [2:0]	R/W	0x82	Yes	DEM Control 000: 0 dB 001: -1.5 dB 010: -3.5 dB (default) 011: -5 dB 100: -6 dB 101: -8 dB 110: -9 dB 111: -12 dB
		7	Reserved			Yes	Reserved
		6:4	Reserved				Reserved
0x12	CH A Idle Threshold	3:2	idle_thA[1:0]	R/W	0x00	Yes	Assert Thresholds Use only if register 0x08 [6] = 1 00 = 180 mV (Default) 01 = 160 mV 10 = 210 mV 11= 190 mV
		1:0	idle_thD[1:0]			Yes	Deassert Thresholds Use only if register 0x08 [6] = 1 00 = 110 mV (Default) 01 = 100 mV 10 = 150 mV 11= 130 mV
0x13	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x14	Reserved	7:0	Reserved	R/W	0x00		Reserved

DS80PCI102 SNLS344G – JULY 2011–REVISED AUGUST 2015

Table 10. SMBus Register Map (continued)

Address	Register Name	Bit	Field	Туре	Default	EEPROM Bit	Description
		7:6	Reserved				Reserved
		5:4	Reserved			Yes	Reserved
0x15	CH B RXDET Control	3:2	RXDET	R/W	0x00	Yes	00: Input is hi-Z impedance 01: Auto RX-Detect, outputs test every 12 ms for 600 ms (50 times) then stops; termination is hi-Z until detection; once detected input termination is 50 Ω 10: Auto RX-Detect, outputs test every 12 ms until detection occurs; termination is hi-Z until detection; once detected input termination is 50 Ω 11: Input is 50 Ω Note: override RXDET pin.
		1:0	Reserved				Reserved
0x16	CH B EQ Control	7:0	BOOST [7:0]	R/W	0x2F	Yes	EQ Control - total of 256 levels See Table 2
		7	Sel_scp	_	0xED	Yes	1 = Short Circuit Protection ON 0 = Short Circuit Protection OFF
0x17	CH B RATE Control	6	Sel_RATE	R/W		Yes	1 = Select GEN1/2 Mode 0 = Select GEN3 Mode
	Control	5:3	Reserved			Yes	Reserved
		2:0	Reserved			Yes	Reserved
		7	Reserved	R R/W	-		Reserved
		6:5	Rate Information				Signal Rate Detected 00 = GEN1 (2.5G) 01 = GEN2 (5.0G) 11 = GEN3 (8.0G)
		4:3	Reserved				Reserved
0x18	CH B DEM Control	2:0	DEM [2:0]		0x02	Yes	DEM Control 000: 0 dB 001: -1.5 dB 010: -3.5 dB (default) 011: -5 dB 100: -6 dB 101: -8 dB 111: -9 dB 111: -12 dB
		7	Reserved			Yes	Reserved
		6:4	Reserved				Reserved
0x19	CH B Idle Threshold	3:2	idle_thA[1:0]	R/W	0x00	Yes	Assert Thresholds Use only if register 0x08 [6] = 1 00 = 180 mV (Default) 01 = 160 mV 10 = 210 mV 11= 190 mV
		1:0	idle_thD[1:0]			Yes	Deassert Thresholds Use only if register 0x08 [6] = 1 00 = 110 mV (Default) 01 = 100 mV 10 = 150 mV 11= 130 mV
0x1A-0x1B	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
0x1C	Reserved	5:2	Reserved	R/W	0x00	Yes	Reserved
		1:0	Reserved				Reserved
0x1D	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
0x1E	Reserved	7:0	Reserved	R/W	0xAD	Yes	Reserved

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

TEXAS INSTRUMENTS

www.ti.com

Table 10. SMBus Register Map (continued)	Table 10.	SMBus	Register	Мар	(continued)
--	-----------	-------	----------	-----	-------------

Address	Register Name	Bit	Field	Туре	Default	EEPROM Bit	Description
- · -	<u> </u>	7:3	Reserved	-			Reserved
0x1F	Reserved	2:0	Reserved	R/W	0x02	Yes	Reserved
		7	Reserved			Yes	Reserved
0x20 Reserved		6:4	Reserved	R/W	0x00		Reserved
		3:0	Reserved			Yes	Reserved
0x21-0x22	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
0x23 Reserved		5:2	Reserved	R/W	0x00	Yes	Reserved
		1:0	Reserved				Reserved
0x24	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
		7:5	Reserved			Yes	Reserved
0x25	CH A VOD	4:2	VOD CHA Control	R/W	0xAD	Yes	VOD Control CHA 000: 0.7 V 001: 0.8 V 010: 0.9 V 011: 1.0 V (default) 100: 1.1 V 101: 1.2 V 110: 1.3 V 111: 1.4 V
		1:0	Reserved			Yes	Reserved
0x26	Reserved	7:3	Reserved	R/W	0x02		Reserved
0x26	Reserved	2:0	Reserved	K/W	0x02	Yes	Reserved
		7	Reserved	R/W	0x00	Yes	Reserved
0x27	Reserved	6:4	Reserved				Reserved
		3:0	Reserved			Yes	Reserved
0,20	Idla Cantral	7	Reserved	R/W	0,400		Reserved
0x28	Idle Control	6:0	Reserved	K/W	0x00	Yes	Reserved
0x29-0x2A	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
0x2B	Reserved	5:2	Reserved	R/W	0x00	Yes	Reserved
		1:0	Reserved				Reserved
0x2C	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
		7:5	Reserved			Yes	Reserved
0x2D	CH B VOD	B VOD 4:2 VOD CHB Control R/W		R/W	R/W 0xAD	Yes	VOD Control CHB 000: 0.7 V 001: 0.8 V 010: 0.9 V 011: 1.0 V (default) 100: 1.1 V 101: 1.2 V 110: 1.3 V 111: 1.4 V
		1:0	Reserved	1		Yes	Reserved
		7:3	Reserved		_		Reserved
0x2E	Reserved	2:0	Reserved	R/W	0x02	Yes	Reserved
		7	Reserved			Yes	Reserved
0x2F	Reserved	6:4	Reserved	R/W	0x00		Reserved
		3:0	Reserved			Yes	Reserved
0x30-0x31	Reserved	7:0	Reserved	R/W	0x00		Reserved

DS80PCI102 SNLS344G – JULY 2011– REVISED AUGUST 2015

Table 10. SM	3us Register	Map (c	ontinued)
--------------	---------------------	--------	-----------

Address	Register	Bit	Field	Туре	Default	EEPROM	Description
	Name	7:6	Reserved			Bit	Reserved
0x32	Reserved	5:2	Reserved	R/W	0x00	Yes	Reserved
07.02	Reserved	1:0	Reserved	10,00	0,00	103	Reserved
0x33	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
0x34	Reserved	7:0	Reserved	R/W	0xAD	Yes	Reserved
		7:3	Reserved		070 12		Reserved
0x35	Reserved	2:0	Reserved	R/W	0x02	Yes	Reserved
		7	Reserved			Yes	Reserved
0x36	Reserved	6:4	Reserved	R/W	0x00		Reserved
		3:0	Reserved	-		Yes	Reserved
0x37-0x38	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
0x39	Reserved	5:2	Reserved	R/W	0x00	Yes	Reserved
		1:0	Reserved				Reserved
0x3A	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
0x3B	Reserved	7:0	Reserved	R/W	0xAD	Yes	Reserved
		7:3	Reserved	D 444	0.00		Reserved
0x3C	Reserved	2:0	Reserved	R/W	0x02	Yes	Reserved
		7	Reserved			Yes	Reserved
0x3D	Reserved	6:4	Reserved	R/W	0x00		Reserved
		3:0	Reserved			Yes	Reserved
0x3E-0x3F	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:6	Reserved				Reserved
0x40	Reserved	5:2	Reserved	R/W	0x00	Yes	Reserved
		1:0	Reserved				Reserved
0x41	Reserved	7:0	Reserved	R/W	0x2F	Yes	Reserved
0x42	Reserved	7:0	Reserved	R/W	0xAD	Yes	Reserved
0x43	Reserved	7:3	Reserved	R/W	0x02		Reserved
0843	Reserved	2:0	Reserved	r/w	0x02	Yes	Reserved
		7	Reserved			Yes	Reserved
0x44	Reserved	6:4	Reserved	R/W	0x00		Reserved
		3:0	Reserved			Yes	Reserved
0x45	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x46	Reserved	7:0	Reserved	R/W	0x38		Reserved
0x47	Reserved	7:4	Reserved	R/W	0x00		Reserved
0,47	Reserved	3:0	Reserved	11/ 11	0,00	Yes	Reserved
0x48	Reserved	7:6	Reserved	R/W	0x05	Yes	Reserved
0,40		5:0	Reserved	1 1/ 7 7	0.00		Reserved
0x49-0x4B	Reserved	7:0	Reserved	R/W	0x00		Reserved
		7:3	Reserved	_		Yes	Reserved
0x4C	Reserved	2:1	Reserved	R/W	0x00		Reserved
		0	Reserved			Yes	Reserved
0x4D-0x50	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x51	Device	7:5	Version[2:0]	R	0x77		011'b
	Information	4:0	Device ID[4:0]				1 0111'b
0x52	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x53	Reserved	7:0	Reserved	R/W	0x00		Reserved

Copyright © 2011–2015, Texas Instruments Incorporated

DS80PCI102 SNLS344G – JULY 2011 – REVISED AUGUST 2015

TEXAS INSTRUMENTS

www.ti.com

Address	Register Name	Bit	Field	Туре	Default	EEPROM Bit	Description
0x54	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x55	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x56	Reserved	7:0	Reserved	R/W	0x10		Reserved
0x57	Reserved	7:0	Reserved	R/W	0x64		Reserved
0x58	Reserved	7:0	Reserved	R/W	0x21		Reserved
050	Deserved	7:1	Reserved	DAA	0x00		Reserved
0x59	Reserved	0	Reserved	R/W		Yes	Reserved
0x5A	Reserved	7:0	Reserved	R/W	0x54	Yes	Reserved
0x5B	Reserved	7:0	Reserved	R/W	0x54	Yes	Reserved
0x5C	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x5D	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x5E	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x5F	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x60	Reserved	7:0	Reserved	R/W	0x00		Reserved
0x61	Reserved	7:0	Reserved	R/W	0x00		Reserved

Table 10. SMBus Register Map (continued)

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

In PCIe Gen-3 applications, the specification requires Rx-Tx link training to establish and optimize signal conditioning settings at 8 Gbps. In link training, the Rx partner requests a series of FIR - preshoot and deemphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-levels (6 dB to 12 dB) of CTLE followed by a single tap DFE. The link training would pre-condition the signal with an equalized link between the root-complex and endpoint. Note that there is no link training in PCIe Gen-1 (2.5 Gbps) or PCIe Gen-2 (5.0 Gbps) applications. The DS80PCI102 is placed in between the Tx and Rx. It would help extend the PCB trace reach distance by boosting the attenuated signals with it's equalization, so that the signal can be more easily recovered by the downstream Rx. In Gen 3 mode, DS80PCI102 transmit outputs are designed to pass the Tx Preset signaling onto the Rx for the PCIe Gen 3 link to train and optimize the equalization settings. The suggested setting for the DS80PCI102 are EQ = 0x00, VOD = 1.2 Vp-p and DEM = 0 dB. Additional adjustments to increase the EQ or DEM setting should be performed to optimize the eye opening in the Rx partner. See the tables below for Pin Mode and SMBus Mode configurations.

Channel	Pin Mode Settings								
EQx[1:0]	0, 0 (Level 1)								
DEMx	Float, R (Level 10)								

Table 11. Suggested Device Settings in Pin Mode

	~							
Register	Write Value	Comments						
0x06	0x18	Enables SMBus Slave Mode Register Control						
0x0F	0x00	Set CHA EQ to 0x00.						
0x25	0xAD	Set CHA VOD to 101'b (1.2 Vp-p).						
0x11	0x00	Set CHA DEM to 000'b (0 dB).						
0x16	0x00	Set CHB EQ to 0x00.						
0x2D	0xAD	Set CHB VOD to 101'b (1.2 Vp-p).						
0x18	0x00	Set CHB DEM to 000'b (0 dB).						

Table 12. Suggested Device Settings in SMBus Slave Mode

8.2 Typical Application

The DS80PCI102 extends PCB trace and cable reach in PCIe Gen1, 2 and 3 applications by applying equalization to compensate for the insertion loss of the trace or cable. In Gen 3 mode, the device aids specifically in the equalization link training to improve the margin and overall eye inside the Rx. The DS80PCI102 can be used on the motherboard, mid plane (riser card), end-point target cards, and active cable assemblies. The capability of the DS80PCI102 performance is shown in the following two test setup connections.

Figure 10. Test Setup Connections Diagram

Typical Application (continued)

Figure 11. Test Setup Connections Diagram

8.2.1 Design Requirements

As with any high speed design, there are many factors which influence the overall performance. The following list indicates critical areas for consideration during design.

- Use 100-Ω impedance traces. Length matching on the P and N traces should be done on the single-end segments of the differential pair.
- Use uniform trace width and trace spacing for differential pairs.
- Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.
- For Gen3, AC-coupling capacitors of 220 nF are recommended, maximum body size is 0402, and add cutout void on GND plane below the landing pad of the capacitor in order to reduce parasitic capacitance to GND.
- Back-drill connector vias and signal vias to minimize stub length.
- Use Reference plane vias to ensure a low inductance path for the return current.

8.2.2 Detailed Design Procedure

The DS80PCI102 should be placed at an offset location and close to the Rx with respect to the overall channel attenuation. The suggested settings are recommended as a starting point for most applications. Once these settings are configured, additional adjustments of the DS80PCI102 EQ or DE may be required to optimize the repeater performance. The CTLE and DFE coefficient in the Rx can also be adjusted to further improve the eye opening.

8.2.3 Application Curves

Typical Application (continued)

9 Power Supply Recommendations

9.1 3.3-V or 2.5-V Supply Mode Operation

The DS80PCI102 has an optional internal voltage regulator to provide the 2.5-V supply to the device. In 3.3-V mode, the VIN pin = 3.3 V is used to supply power to the device and the VDD pins should be left open. The internal regulator will provide the 2.5 V to the VDD pins of the device and a 0.1- μ F capacitor is needed at each of the five VDD pins for power supply de-coupling (total capacitance should be $\leq 0.5 \mu$ F), and the VDD pins should be left open. The VDD_SEL pin must be tied to GND to enable the internal regulator. In 2.5-V mode, the VIN pin should be left open and 2.5-V supply must be applied to the VDD pins. The VDD_SEL pin must be left open (no connect) to disable the internal regulator.

The DS80PCI102 can be configured for 2.5-V operation or 3.3-V operation. The lists below outline required connections for each supply selection.

3.3-V Mode of Operation

- 1. Tie VDD_SEL = 0 with $1-k\Omega$ resistor to GND.
- 2. Feed 3.3-V supply into VIN pin. Local 1.0-µF decoupling at VIN is recommended.
- 3. See information on VDD bypass below.
- 4. SDA and SCL pins should connect pullup resistor to VIN
- 5. Any 4-Level input which requires a connection to "Logic 1" should use a $1-k\Omega$ resistor to VIN

2.5-V Mode of Operation

- 6. VDD_SEL = Float
- 7. VIN = Float
- 8. Feed 2.5-V supply into VDD pins.
- 9. See information on VDD bypass below.
- 10. SDA and SCL pins connect pullup resistor to VDD for 2.5-V uC SMBus IO
- 11. SDA and SCL pins connect pullup resistor to VDD for 3.3-V uC SMBus IO
- 12. Any 4-Level input which requires a connection to "Logic 1" should use a $1-k\Omega$ resistor to VIN

NOTE

Note: The DAP (bottom solder pad) is the GND connection.

3.3-V or 2.5-V Supply Mode Operation (continued)

Total capacitance should be $\leq 0.2 \ \mu F$

Figure 16. 3.3 V or 2.5 V Supply Connection Diagram

9.2 Power Supply Bypass

Two approaches are recommended to ensure that the DS80PCI102 is provided with an adequate power supply bypass. First, the supply (VDD) and ground (GND) pins should be connected to power planes routed on adjacent layers of the printed circuit board. Second, careful attention to supply bypassing through the proper use of bypass capacitors is required. A 0.1 μ F bypass capacitor should be connected to each VDD pin such that the capacitor is placed as close as possible to the device. Small body size capacitors (such as 0402) reduce the parasitic inductance of the capacitor and also help in placement close to the VDD pin. If possible, the layer thickness of the dielectric should be minimized so that the VDD and GND planes create a low inductance supply with distributed capacitance.

10 Layout

10.1 Layout Guidelines

The differential inputs and outputs are designed with $100-\Omega$ differential terminations. Therefore, they should be connected to interconnects with controlled differential impedance of approximately 85-110 Ω . It is preferable to route differential lines primarily on one layer of the board, particularly for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used sparingly and must be placed symmetrically for each side of a given differential pair. Whenever differential vias are used, the layout must also provide for a low inductance path for the return currents as well. Route the differential signals away from other signals and noise sources on the printed circuit board. To minimize the effects of crosstalk, a 5:1 ratio or greater should be maintained between inter-pair spacing and trace width. See AN-1187 Leadless Leadframe Package (LLP) Application Report (SNOA401) for additional information on QFN (WQFN) packages.

The DS80PCI102 pinout promotes easy high speed routing and layout. To optimize DS80PCI102 performance refer to the following guidelines:

- 1. Place local VIN and VDD capacitors as close as possible to the device supply pins. Often the best location is directly under the DS80PCI102 pins to reduce the inductance path to the capacitor. In addition, bypass capacitors may share a via with the DAP GND to minimize ground loop inductance.
- 2. Differential pairs going into or out of the DS80PCI102 should have adequate pair-to-pair spacing to minimize crosstalk.
- 3. Use return current via connections to link reference planes locally. This ensures a low inductance return current path when the differential signal changes layers.
- 4. Optimize the via structure to minimize trace impedance mismatch.
- 5. Place GND vias around the DAP perimeter to ensure optimal electrical and thermal performance.
- 6. Use small body size AC coupling capacitors when possible 0402 or smaller size is preferred. The AC coupling capacitors should be placed closer to the Rx on the channel.

Figure 17 depicts different transmission line topologies which can be used in various combinations to achieve the optimal system performance. Impedance discontinuities at the differential via can be minimized or eliminated by increasing the swell around each hole and providing for a low inductance return current path. When the via structure is associated with thick backplane PCB, further optimization such as back drilling is often used to reduce the detrimental high-frequency effects of stubs on the signal path.

10.2 Layout Example

Figure 17. Typical Routing Options

TEXAS INSTRUMENTS

www.ti.com

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

• Absolute Maximum Ratings for Soldering, SNOA549

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments. PCI-Express is a trademark of PCI-SIG. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Aug-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS80PCI102SQ/NOPB	ACTIVE	WQFN	RTW	24	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	PCI102	Samples
DS80PCI102SQE/NOPB	ACTIVE	WQFN	RTW	24	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	PCI102	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

24-Aug-2015

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS80PCI102SQ/NOPB	WQFN	RTW	24	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
DS80PCI102SQE/NOPB	WQFN	RTW	24	250	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

25-Aug-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS80PCI102SQ/NOPB	WQFN	RTW	24	1000	213.0	191.0	55.0
DS80PCI102SQE/NOPB	WQFN	RTW	24	250	213.0	191.0	55.0

MECHANICAL DATA

RTW0024A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated