February 1996

National Semiconductor

DS3695A/DS3695AT/DS3696A Multipoint RS485/RS422 Transceivers

General Description

The DS3695A and DS3696A are high speed differential TRI-STATE® bus/line transceivers designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission. In addition they are compatible with requirements of RS-422.

The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12V to -7V. Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696A provides an output pin (TS) which reports the thermal shutdown of the device. TS is an "open collector" pin with an internal 10 k Ω pull-up resistor. This allows the TS outputs of several devices to be wire OR-ed.

Both AC and DC specifications are guaranteed over the 0°C to 70°C temperature and 4.75V to 5.25V supply voltage range.

Features

- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 10 ns driver propagation delays (typical)
- Single +5V supply
- -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis
- Available in SOIC packaging

© 1998 National Semiconductor Corporation DS005272

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V _{CC}	7V
Control Input Voltages	7V
Driver Input Voltage	7V
Driver Output Voltages	+15V/-10V
Receiver Input Voltages	+15V/-10V
Receiver Output Voltage	5.5V
Continuous Power Dissipation 25°C	
M Package	630 mW (Note 4)
Storage Temp. Range	–65°C to +150°C

Lead Temp. (Soldering 4 seconds)

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Free Air Temp. (T _A)			
Commercial (DS3695AM)	0	+70	°C
Industrial (DS3695ATM)	-40	+85	°C
Commercial (DS3696AM)	0	+70	°C

260°C

Electrical Characteristics (Notes 2, 3)

 $0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \, 4.75V \, < \, V_{CC} \, < \, 5.25V$ unless otherwise specified

Symbol	Paramet	er	Conditions			Тур	Max	Units
V _{OD1}	Differential Driver Out	put	I _O = 0				5	v
	Voltage (Unloaded)							, v
V _{OD2}	Differential Driver Out	ifferential Driver Output		R = 50Ω; (RS-422) (Note 5)	2			V
	Voltage (with Load)			R = 27Ω; (RS-485)	1.5			V
ΔV_{OD}	Change in Magnitude	of Driver						
	Differential Output Vol	tage For					0.2	V
	Complementary Output	ut States						
V _{oc}	Driver Common Mode Voltage	Output		R = 27Ω			3.0	v
$\Delta V_{OC} $	Change in Magnitude	of Driver	1					
	Common Mode Outpu	t Voltage					0.2	v
	For Complementary O	output States						
VIH	Input High Voltage				2			V
VIL	Input Low Voltage	- [DI, DE,				0.8	V
V _{CL}	Input Clamp Voltage	RE	, RE /DE	I _{IN} = -18 mA			-1.5	V
	Input Low Current	1		$V_{IL} = 0.4V$			-200	μA
I _{IH}	Input High Current			V _{IH} = 2.4V			20	μA
I _{IN}	Input Current	DO/RI, DO /RI	$V_{CC} = 0V \text{ or } 5.25V$	V _{IN} = 12V			+1.0	m/
		RI, RI	DE or $R\overline{E}$ /DE = 0V				-0.8	mA
V _{TH}	Differential Input Three	shold	$-7V \le V_{CM} \le +12V$	L				V
	Voltage for Receiver		-		-0.2		+0.2	
ΔV_{TH}	Receiver Input Hyster					70		m∖
V _{он}	Receiver Output High	Voltage	$I_{OH} = -400 \ \mu A$		2.4			V
V _{OL}	Output Low Voltage	RO	I _{OL} = 16 mA (Note 5)			0.5	V
	TS		I _{OL} = 8 mA				0.45	V
I _{OZR}	OFF-State (High Impe	dance)	V _{CC} = Max					
	Output Current at Rec	eiver	$0.4V \le V_O \le 2.4V$				±20	μA
R _{IN}	Receiver Input Resista	ance	$-7V \le V_{CM} \le +12V$		12			kΩ
I _{CC} Supply Current		No Load	Driver Outputs Enabled		42	60	mA	
			(Note 5)	Driver Outputs Disabled		27	40	mA
I _{OSD}	Driver Short-Circuit		$V_{O} = -7V$ (Note 5)				-250	mA
	Output Current		$V_{\rm O} = +12V$ (Note 5)				+250	mA
I _{OSR}	Receiver Short-Circuit		$V_{\rm O} = 0V$		-15		-85	mA
-	Output Current							

Electrical Characteristics (Notes 2, 3) (Continued)

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified. Note 3: All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 4: Derate linearly at 6.5 mW/°C to 337 mW at 70°C.

Note 5: All limits for which Note 5 is applied must be derated by 10% for DS3695AT. Other parameters remain the same for this extended temperature range device $(-40^{\circ}C \le T_A \le +85^{\circ}C)$.

Switching Characteristics

 $0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \, 4.75V \, < \, V_{CC} \, < \, 5.25V$ unless otherwise specified (Note 3)

Receiver Switching Characteristics

(Figures 1, 2 and Figure 3)

Symbol	Conditions	Min	Тур	Max	Units
t _{PLH}	C _L = 15 pF	15	28	42	ns
t _{PHL}	S1 and S2	15	28	42	ns
t _{PLH} -t _{PHL}	Closed	0	3		ns
PLZ	C _L = 15 pF, S2 Open	5	29	35	ns
РНZ	C _L = 15 pF, S1 Open	5	12	16	ns
PZL	C _L = 15 pF, S2 Open	7	15	28	ns
PZH	C _L = 15 pF, S1 Open	7	15	20	ns

Driver Switching Characteristics

Symbol	Conditions	Min	Тур	Max	Units
SINGLE ENDED CHAR	ACTERISTICS (Figures 4, 5 and Figur	re 7)		•	
t _{PLH}	$R_{LDIFF} = 60\Omega$	9	15	22	ns
t _{PHL}	$C_{L1} = C_{L2} = 100 \text{ pF}$	9	15	22	ns
t _{SKEW} t _{PLH} -t _{PHL}		0	2	8	ns
t _{PLZ}	C _L = 15 pF, S2 Open	7	15	30	ns
t _{PHZ}	C _L = 15 pF, S1 Open	7	15	30	ns
t _{PZL}	C _L = 100 pF, S2 Open	30	35	50	ns
t _{PZH}	C _L = 100 pF, S1 Open	30	35	50	ns
DIFFERENTIAL SWITC	HING CHARACTERISTICS (Figure 7)				
t _r , t _f	$R_{LDIFF} = 60\Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$	6	10	18	ns

AC Test Circuits and Switching Waveforms

X — Don't care condition

