

🖉 Order

Now

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

DACx0504 Quad, 16-, 14-, 12-bit, SPI voltage output DACs with internal reference

Technical

Documents

1 Features

- Performance
 - INL: ±1 LSB Maximum at 16-Bit Resolution
 - TUE: ±0.1% of FSR Maximum
- Integrated 2.5 V Precision Internal Reference
 - Initial Accuracy: ±5 mV, Maximum
 - Low Drift: 2 ppm/°C Typical
- High Drive Capability: 20 mA With 0.5 V From Supply Rails
- Flexible Output Configuration
 - User Selectable Gain: 2, 1 or ¹/₂
 - Reset to Zero Scale or Midscale
- Wide Operating Range
 - Power Supply: 2.7 V to 5.5 V
 - Temperature: -40°C to +125°C
 - 50-MHz, SPI-Compatible Serial Interface
 - 4-Wire Mode, 1.7 V to 5.5 V Operation
 - Daisy-Chain Operation
 - CRC Error Check
- Low Power: 0.7 mA/Channel at 5.5 V
- Small Package: 3-mm × 3-mm, 16-Pin WQFN

2 Applications

- Optical Networking
- Wireless Infrastructure
- Industrial Automation
- Data Acquisition Systems

3 Description

🥭 Tools &

Software

DAC80504. The DAC70504, DAC60504 and (DACx0504) are a pin-compatible family of lowpower, four-channel, buffered voltage-output, digitalto-analog converters (DACs) with 16-, 14-, and 12-bit resolution. The DACx0504 includes a low drift, 2.5-V internal reference, eliminating the need for an external precision reference in most applications. A user-selectable gain configuration provides full-scale output voltages of 1.25 V (gain = $\frac{1}{2}$), 2.5 V (gain = 1), or 5 V (gain = 2). These devices operate from a single 2.7-V to 5.5-V supply, are specified monotonic, and provide high linearity of ±1 LSB INL.

Support &

Community

20

Communication to the DACx0504 is performed through a 4-wire serial interface that operates at clock rates of up to 50 MHz. The VIO pin enables serial interface operation from 1.7 V to 5.5 V. The DACx0504 flexible interface enables operation with a wide range of industry-standard microprocessors and microcontrollers.

The DACx0504 incorporate a power-on-reset circuit that powers up and maintains the DAC outputs at either zero scale or midscale until a valid code is written to the device. These device consume a low current of 0.7 mA/channel at 5.5 V, making these devices an excellent choice for battery-operated equipment. A per-channel power-down feature reduces the device current consumption to 15 μ A.

The DACx0504 is characterized for operation over the temperature range of -40° C to $+125^{\circ}$ C, and is available in a small, 3-mm × 3-mm QFN package.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
DACx0504	WQFN (16)	3.00 mm × 3.00 mm			

(1) For all available packages, see the package option addendum at the end of the data sheet.

Simplified Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

EXAS

Table of Contents

1	Features 1				
2	Applications 1				
3	Des	cription1			
4	Rev	ision History 2			
5	Dev	ice Comparison Table 4			
6	Pin	Configuration and Functions 5			
7	Spe	cifications			
	7.1	Absolute Maximum Ratings 6			
	7.2	ESD Ratings 6			
	7.3	Recommended Operating Conditions 6			
	7.4	Thermal Information7			
	7.5	Electrical Characteristics7			
	7.6	Typical Characteristics 10			
8	Deta	ailed Description 20			
	8.1	Overview 20			
	8.2	Functional Block Diagram 20			
	8.3	Feature Description 21			
	8.4	Device Functional Modes 25			

	8.5	Programming	28
	8.6	Register Map	30
9	Appl	ication and Implementation	36
	9.1	Application Information	36
	9.2	Typical Application	38
10	Pow	er Supply Recommendations	40
11	Layo	out	40
	11.1	Layout Guidelines	40
	11.2	Layout Example	40
12	Devi	ice and Documentation Support	41
	12.1	Documentation Support	41
	12.2	Related Links	41
	12.3	Receiving Notification of Documentation Updates	41
	12.4	Community Resources	41
	12.5	Trademarks	41
	12.6	Electrostatic Discharge Caution	41
	12.7	Glossary	41
13		hanical, Packaging, and Orderable	
	infor	mation	41

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision B (September 2018) to Revision C	Page
•	Added DAC60504 device to data sheet	1
•	Changed TUE values for DAC70504 in <i>Electrical Characteristics</i>	7
•	Changed Full-scale error values for DAC70504 in <i>Electrical Characteristics</i>	7
•	Changed Gain error values for DAC70504 in <i>Electrical Characteristics</i>	7
•	Changed channel-to-channel dc crosstalk values for DAC70504 in <i>Electrical Characteristics</i>	8
•	Changed reference output drift values for DAC70504 in <i>Electrical Characteristics</i>	9
•	Changed reference thermal hysteresis values for DAC70504 in <i>Electrical Characteristics</i>	9
•	Deleted Figure 58, DAC70504 Solder Heat Reflow Reference Voltage Shift	23
•	Changed reset value for VERSIONID from 10 to 11 in Table 10, DEVICE ID Field Descriptions	31

Changes from Revision A (December 2017) to Revision B

Page

•	Changed TUE in Features from ±0.14% to ±0.1%	. 1
•	Changed Low Drift in Features from 5 ppm/°C to 2 ppm/°C and added DAC80504	. 1
•	Deleted Product Preview for DAC80504 from Device Information	. 1
•	Deleted Product Preview for DAC80504 from Device Comparison Table	. 4
•	Added Added TUE DAC80504. All Gains row in <i>Electrical Characteristics</i>	. 7
•	Added Added Full-scale error DAC80504. All Gains row in <i>Electrical Characteristics</i>	. 7
•	Added Added Gain error DAC80504. All Gains row in <i>Electrical Characteristics</i>	. 7
•	Changed Short circuit current, DAC code = full scale, output shorted to GND in <i>Electrical Characteristics</i> TYP from 35 mA to 30 mA	. 8
•	Changed Short circuit current, DAC code = zero scale, output shorted to V _{DD} in <i>Electrical Characteristics</i> TYP from 30 mA to 35 mA	. 8
•	Added Channel-to channel dc crosstalk, Measured channel at midscale. Adjacent channel at full scale. DAC80504 in <i>Electrical Characteristics</i>	. 8

•	Added Channel-to-channel crosstalk, Measured channel at midscale. All other channels at full scale. DAC80504 in <i>Electrical Characteristics</i>	8
•	Added Added Reference output drift, DAC80504 in <i>Electrical Characteristics</i>	
•	Added Reference thermal hysteresis, DAC80504. First cycle in <i>Electrical Characteristics</i>	9
•	Changed some graphs in Typical Characteristics	. 10
•	Added Figure 59, Solder Heat Reflow Reference Voltage Shift	. 23
•	Added t _{LDACS} and t _{LDACH} to Table 7	. 28
•	Added 010 (12-bit) to D14:12 Description in Table 10	. 31
_		

Changes from Original (August 2017) to Revision A

Page

Changed from Advance Information to Mixed Status.....

5 Device Comparison Table

DEVICE	RESOLUTION	REFERENCE
DAC80504	16-Bit	Internal (default) or External
DAC70504	14-Bit	Internal (default) or External
DAC60504	12-Bit	Internal (default) or External

DAC80504, DAC70504, DAC60504 SBAS871C – AUGUST 2017 – REVISED JANUARY 2019

6 Pin Configuration and Functions

Pin Functions

PIN			DECODIDITION	
NAME	NO.	TYPE	DESCRIPTION	
REF	1	I/O	When using internal reference, this is the reference output voltage pin (default). When using an external reference, this is the reference input pin to the device.	
OUT0	2	0	Analog output voltage from DAC 0.	
OUT1	3	0	Analog output voltage from DAC 1.	
OUT2	4	0	Analog output voltage from DAC 2.	
OUT3	5	0	Analog output voltage from DAC 3.	
GND	6	GND	Ground reference point for all circuitry on the device.	
VDD	7	PWR	Analog supply voltage (2.7 V to 5.5 V).	
GAIN	8	I	Sets the gain configuration after a power-up or reset event. When tied to GND, the initial buffer amplifier gain for all four channels is set to 1. When tied to V_{IO} the initial buffer amplifier gain is 2. Changing the state of this pin after power-up does not affect the device operation.	
RSTSEL	9	I	Reset select pin. When tied to GND all four DACs reset to zero scale. When connected to V_{IO} all four DACs reset to midscale.	
REFDIV	10	I	Sets the reference divider configuration after a power-up or reset event. When tied to GND, the reference voltage is not divided down. When tied to V_{IO} the reference voltage is divided by 2. Changing the state of this pin after power-up does not affect the device operation.	
LDAC	11	I	A high-to-low transition on the LDAC pin causes the DAC outputs of those channels configured in synchronous mode to update simultaneously. The pin can be tied permanently to GND.	
CS	12	I	Active low serial data enable. This input is the frame synchronization signal for the serial data. When the signal goes low, it enables the serial interface input shift register.	
SCLK	13	I	Serial interface clock.	
SDI	14	I	Serial interface data input. Data are clocked into the input shift register on each falling edge of the SCLK pin.	
SDO/ALARM	15	0	Serial interface data output (default). The SDO pin is in high impedance when \overline{CS} pin is high. Data are clocked out of the input shift register on either rising or falling edges of the SCLK pin as specified by the FSDO bit. Alternatively the pin can be configured as an ALARM open-drain output to indicate a CRC or reference alarm event. If configured as ALARM a 10 k Ω , pull-up resistor to V _{IO} is required.	
VIO	16	PWR	IO supply voltage (1.7 V to 5.5 V). This pin sets the I/O operating voltage for the serial interface.	
Thermal Pad	-	-	The thermal pad is located on the bottom-side of the QFN package. The thermal pad should be connected to any internal PCB ground plane using multiple vias for good thermal performance.	

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
0 <i>k</i>	V _{DD} to GND	-0.3	6	- V
Suppy voltage	V _{IO} to GND	-0.3	6	V
Pin voltage	DAC outputs to GND	-0.3	V _{DD} + 0.3	
	REF to GND	-0.3	V _{DD} + 0.3	V
	Digital pins to GND	-0.3	V _{IO} + 0.3	
Input current	Input current to any pin except supply pins	-10	10	mA
	Operating free-air, T _A	-40	125	
Temperature	Junction, T _J	-40	150	°C
	Storage, T _{stg}	-60	150	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	V	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT	
POWER SU	JPPLY					
V _{DD}	Analog supply voltage		2.7	5.5	V	
V _{IO}	IO supply voltage		1.7	5.5	5.5 V	
DIGITAL IN	IPUTS					
	Digital input voltage		0	V _{IO}	V	
REFERENC	CE INPUT					
	V _{DD} = 2.7 V to 3.3 V Re V _{DD} = 3.3 V to 5.5 V	Reference divider disabled	1.2	$(V_{DD} - 0.2)/2$	v	
M		Reference divider enabled	2.4	$(V_{DD} - 0.2)/2$ $V_{DD} - 0.2$		
V _{REFIN}		Reference divider disabled	1.2	V _{DD} /2		
		Reference divider enabled	2.4	V _{DD}		
TEMPERAT	TURE					
T _A	Operating free-air temperatu	re	-40	125	°C	

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	RTE (WQFN)	UNIT
		16 PINS	
$R_{ ext{ heta}JA}$	Junction-to-ambient thermal resistance	33.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	7.3	°C/W
ΨJT	Junction-to-top characterization parameter	0.2	°C/W
Ψјв	Junction-to-board characterization parameter	7.4	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	0.9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

all minimum and maximum specifications at V_{DD} = 2.7 V to 5.5 V, V_{IO} = 1.7 V to 5.5 V, V_{REFIN} = 1.25 V to 5.5 V, R_{LOAD} = 2 k Ω to GND, C_{LOAD} = 200 pF to GND, digital inputs at V_{IO} or GND, and T_A = -40°C to +125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
STATIC P	ERFORMANCE ⁽¹⁾		-			
		DAC80504	16			
	Resolution	DAC70504	14			Bits
		DAC60504	12			
		DAC80504		±0.5	±1	
INL	Integral nonlinearity	DAC70504		±0.5	±1	LSB
		DAC60504		±0.5	±1	
		DAC80504, specified 16-bit monotonic		±0.5	±1	
DNL	Differential nonlinearity	DAC70504, specified 14-bit monotonic		±0.5	±1	LSB
		DAC60504, specified 12-bit monotonic		±0.5	±1	
TUE	Total unadjusted error			±0.05	±0.1	%FSR
	Offset error			±0.75	±1.5	mV
	Zero-code error	DAC code = zero scale		0.5	1.5	mV
	Full-scale error			±0.05	±0.1	%FSR
	Gain error			±0.05	±0.1	%FSR
	Offset error drift			±1		µV/°C
	Zero-code error drift			±2		µV/°C
	Full-scale error drift			±2		ppm of FSR/°C
	Gain error drift			±1		ppm of FSR/°C
	Output voltage drift over time	$T_A = 25^{\circ}C$, DAC code = midscale, 1600 hours		20		ppm of FSR

 Static performance specified with DAC outputs unloaded for all gain options, unless otherwise noted. End point fit between codes. 16bit: Code 256 to 65280, 14-bit: Code 128 to 16127, 12-bit: Code 16 to 4031. SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

www.ti.com

STRUMENTS

EXAS

Electrical Characteristics (continued)

all minimum and maximum specifications at V_{DD}= 2.7 V to 5.5 V, V_{IO} = 1.7 V to 5.5 V, V_{REFIN} = 1.25 V to 5.5 V, R_{LOAD} = 2 k Ω to GND, C_{LOAD} = 200 pF to GND, digital inputs at V_{IO} or GND, and T_A = -40°C to +125°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
JTPUT CHARACTERISTICS						
	Gain = 2 (BUFF-GAIN = 1, REF-DIV = 0)	0		$2 \times V_{REF}$		
Voltage range	Gain = 1 (BUFF-GAIN = 1, REF-DIV = 1)	0		V _{REF}	V	
	Gain = ½ (BUFF-GAIN = 0, REF-DIV = 1)	0		$\frac{1}{2} \times V_{REF}$		
	to GND or V _{DD} (unloaded)		0.004			
	to GND or V_{DD} (-5 mA $\leq I_{OUT} \leq$ 5 mA)	0.15			v	
Output voltage headroom	to GND or V_{DD} (-10 mA $\leq I_{OUT} \leq$ 10 mA)	0.3			v	
	to GND or V_{DD} (-20 mA $\leq I_{OUT} \leq$ 20 mA)	0.5				
O_{1} and i_{2} (2)	DAC code = full scale, output shorted to GND		30			
Short circuit current ⁽²⁾	DAC code = zero scale, output shorted to V _{DD}		35		mA	
Load regulation	DAC code = midscale, -10 mA $\leq I_{OUT} \leq$ 10 mA		85		μV/mA	
	R _{LOAD} = ∞	0		2	_	
Maximum capacitive load ⁽³⁾	$R_{LOAD} = 2 k\Omega$	0		10	nF	
	DAC code = midscale		0.085		-	
DC output impedance	DAC code at GND or V _{DD}		15		Ω	
YNAMIC PERFORMANCE						
Output voltage settling time	$\%$ to $\%$ scale and $\%$ to $\%$ scale settling time to ± 2 LSB, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2		5		μs	
Slew rate	V _{DD} = 5.5 V, V _{REFIN} = 2.5 V, gain = 2		1.8		V/µs	
Power-up time	DACx-PWDWN 1 to 0 transition, DAC code = full scale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2 ⁽⁴⁾		12		μs	
Power-up glitch magnitude	DAC code = zero scale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2. C_{LOAD} = 50 pF		25		mV	
Output noise	0.1 Hz to 10 Hz, DAC code = midscale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2		14		μV_{PP}	
	1 kHz, DAC code = midscale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2		78			
	10 kHz, DAC code = midscale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 2		74		nV/√ Hz	
Output noise density	1 kHz, DAC code = full scale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 1		55		nv/vnz	
	10 kHz, DAC code = full scale, V_{DD} = 5.5 V, V_{REFIN} = 2.5 V, gain = 1		50			
AC PSRR	DAC code = midscale, frequency = 60 Hz, amplitude = 200 mV_{PP} superimposed on V_{DD}		85		dB	
DC PSRR	DAC code = midscale, V_{DD} = 5 V ± 10%		10		μV/V	
Code change glitch impulse	1 LSB change around major carrier		4		nV-s	
Channel-to-channel ac crosstalk	DAC code = midscale. Code 32 to full-scale swing on adjacent channel		0.2		nV-s	
Channel-to-channel dc crosstalk	Measured channel at midscale, adjacent channel at full scale		5		μV	
	Measured channel at midscale, all other channels at full scale		10		μν	
Digital feedthrough	DAC code = midscale. f_{SCLK} = 1 MHz, SDO disabled		0.1		nV-s	
KTERNAL REFERENCE INPUT						
Reference input current	$V_{REFIN} = 2.5 V$		25		μA	
Reference input impedance			100		kΩ	
Reference input capacitance			5		pF	

(2) Temporary overload condition protection. Junction temperature can be exceeded during current limit. Operation above the specified maximum junction temperature may impair device reliability.

(3) Specified by design and characterization. Not tested during production.

(4) Time to exit DAC power-down mode. Measured from \overline{CS} rising edge to 90% of DAC final value.

Electrical Characteristics (continued)

all minimum and maximum specifications at V_{DD}= 2.7 V to 5.5 V, V_{IO} = 1.7 V to 5.5 V, V_{REFIN} = 1.25 V to 5.5 V, R_{LOAD} = 2 k Ω to GND, C_{LOAD} = 200 pF to GND, digital inputs at V_{IO} or GND, and T_A = -40°C to +125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INTERNA	L REFERENCE					
V _{REFOUT}	Reference output voltage	$T_A = 25^{\circ}C$	2.495	2.5	2.505	V
	Reference output drift			2	5	ppm/°C
	Reference output impedance			0.1		Ω
	Reference output noise	0.1 Hz to 10 Hz		15		μV _{PP}
	Reference output noise density	10 kHz, REF _{LOAD} = 10 nF		130		nV/√Hz
	Reference load current			±5		mA
	Reference load regulation	Source and sink		100		μV/mA
	Reference line regulation			20		μV/V
	Reference output drift over time	T _A = 25°C, 1600 hours		4.8		ppm
		First cycle		50		
	Reference thermal hysteresis	Additional cycle		18		ppm
DIGITAL	INPUTS	L				
V _{IH}	High-level input voltage		0.7 × V _{IO}			V
VIL	Low-level input voltage				0.3 × V _{IO}	V
	Input current			±2		μA
	Input pin capacitance			2		pF
DIGITAL	OUTPUTS	L				
V _{OH}	High-level output voltage	$I_{LOAD} = 0.2 \text{ mA}$	V _{IO} - 0.4			V
V _{OL}	Low-level output voltage	$I_{LOAD} = -0.2 \text{ mA}$			0.4	V
	Output pin capacitance			4		pF
POWER	SUPPLY REQUIREMENTS	L				
		Active mode, internal reference enabled, gain = 1, DAC code = full scale, outputs unloaded, SPI static		2.8	3.6	0
I _{DD}	V _{DD} supply current	Active mode, internal reference disabled, gain = 1, DAC code = full scale, outputs unloaded, SPI static		2.3	3	mA
		Power-down		15		μA
I _{IO}	VIO supply current			2	3	μA

DAC80504, DAC70504, DAC60504

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

www.ti.com

STRUMENTS

XAS

7.6 Typical Characteristics

Typical Characteristics (continued)

DAC80504, DAC70504, DAC60504

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

STRUMENTS

EXAS

Typical Characteristics (continued)

Typical Characteristics (continued)

DAC80504, DAC70504, DAC60504

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

www.ti.com

STRUMENTS

FXAS

Typical Characteristics (continued)

at T_A = 25°C, V_{DD} = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)

Copyright © 2017-2019, Texas Instruments Incorporated

Typical Characteristics (continued)

DAC80504, DAC70504, DAC60504

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

DAC80504, DAC70504, DAC60504

SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

STRUMENTS

EXAS

Typical Characteristics (continued)

Typical Characteristics (continued)

8 Detailed Description

8.1 Overview

The DACx0504 is a pin-compatible family of low-power, four-channel, buffered voltage-output digital-to-analog converters (DACs) with 16-, 14-, and 12-bit resolution. The DACx0504 include a 2.5-V internal reference and user-selectable gain configuration. providing full-scale output voltages of 1.25 V (gain = $\frac{1}{2}$), 2.5 V (gain = 1), or 5 V (gain = 2). The device operates from a single 2.7 V to 5.5 V supply, is specified monotonic, and provides high linearity of ±1 LSB INL.

Communication to the DACx0504 is performed through a 4-wire serial interface that supports stand-alone and daisy-chain operation. The optional frame-error checking provides added robustness to the DACx0504 serial interface.

The DACx0504 incorporates a power-on-reset circuit and RSTSEL pin that powers up and maintains the DAC outputs at either zero scale or midscale until a valid code is written to the device.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Digital-to-Analog Converter (DAC)

Each output channel in the DACx0504 consists of an R-2R ladder architecture followed by an output buffer amplifier. Figure 57 shows a block diagram of the DAC architecture.

Figure 57. DACx0504 DAC Block Diagram

8.3.1.1 DAC Transfer Function

The input data are written to the individual DAC data registers in straight binary format. After a power-on or a reset event, all DAC registers are set to either zero code or midscale code, as determined by the RSTSEL pin. The DAC transfer function is given by Equation 1.

$$V_{OUT} = \frac{CODE}{2^n} \times \frac{V_{REF}}{DIV} \times GAIN$$

where

- CODE = decimal equivalent of the binary code that is loaded to the DAC register. CODE ranges from 0 to 2ⁿ 1.
- V_{REF} = DAC reference voltage. Either V_{REFOUT} from the internal 2.5 V reference or V_{REFIN} if using an external one.
- n = resolution in bits. Either 16 (DAC80504), 14 (DAC70504), or 12 (DAC60504).
- DIV = 1 or 2 as set by the REFDIV pin after a reset event or by the REF-DIV bit in the GAIN register.
- GAIN = 1 or 2 as set by the GAIN pin after a reset event or by the BUFF-GAIN bit for that DAC channel in the GAIN register.
 (1)

Feature Description (continued)

8.3.1.2 Output Amplifiers

The DACx0504 output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving a maximum output range of 0 V to V_{DD} . Each buffer amplifier is capable of driving a load of 2 k Ω in parallel with 10 nF to GND.

The full-scale output voltage for each channel is determined by the reference voltage (V_{REF}), the reference divider setting (DIV), and the output buffer gain for that channel (GAIN), as shown in Table 1. After a power-up or reset event the DIV and GAIN settings are set by the REFDIV and GAIN pins, respectively. During normal operation the DIV and GAIN settings can be reconfigured through the REF-DIV and BUFF-GAIN bit (see Equation 1). The GAIN setting for each output channel can be individually configured thus enabling independent output voltage ranges for each DAC output.

	1 0 0	
DIV SETTING	GAIN SETTING	DAC OUTPUT RANGE
÷2	×1	0 V to ½ × V _{REF}
÷1	×1	Not recommended

Table 1. DAC Output Range Configuration

x2

x2

0 V to V_{REF}

0 V to 2 × V_{REF}

8.3.1.3 DAC Register Structure

÷2

÷1

Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the DAC buffer registers to the active DAC registers can be configured to happen immediately (asynchronous mode) or initiated by an LDAC trigger (synchronous mode). Once the DAC active registers are updated, the DAC outputs change to their new values. When the host reads from a DAC Data register, the value held in the DAC buffer register is returned (not the value held in the DAC active register).

8.3.1.3.1 DAC Register Synchronous and Asynchronous Updates

The update mode for each DAC channel is determined by the status of its corresponding SYNC-EN bit. In asynchronous mode, a write to the DAC data register results in an immediate update of the DAC active register and DAC output on \overline{CS} rising edge. In synchronous mode, writing to the DAC data register does not automatically update the DAC output. Instead the update occurs only after an LDAC trigger event. An LDAC trigger is generated either through the LDAC bit in the TRIGGER register or by the LDAC pin. The synchronous update mode enables simultaneous update of multiple DAC outputs. In both update modes a minimum wait time of 1 µs is required between DAC output updates.

8.3.1.3.2 Broadcast DAC Register

The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a single register write. Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting the corresponding DAC-BRDCAST-EN bit in the SYNC register. A register write to the BRDCAST-DATA register forces those DAC channels that have been <u>configured</u> for broadcast operation to update their outputs. The DAC ouputs update to the broadcast value on CS rising edge independently of their synchronous mode configuration.

8.3.2 Internal Reference

The DACx0504 includes a 2.5 V precision bandgap reference enabled by default. Operation from an external reference is supported by disabling the internal reference in the CONFIG register. The internal reference is externally available at the REF pin.

A minimum 150 nF capacitor is recommended between the reference output and GND for noise filtering.

8.3.2.1 Reference Divider

The reference voltage to the device, either from the internal reference or an external one can be divided by a factor of two by tying the REFDIV pin high at power-up or by setting the REF-DIV bit in the GAIN register to 1 during normal operation. The reference voltage divider provides additional flexibility in setting the full-scale output voltage for each DAC output and must be configured to make certain that there is sufficient headroom from V_{DD} to the DAC operating reference voltage (V_{REF} /DIV). See the *Recommended Operating Conditions* table for more information.

Improper configuration of the reference divider issues a reference alarm condition. In this case, the reference buffer is shut down, and all the DAC outputs go to 0 V. The DAC data registers are unaffected by the alarm condition thus enabling the DAC output to return to normal operation once the reference divider is configured correctly. The reference alarm status can be read from the REF-ALM bit in the STATUS register. Additionally by setting ALM-EN = 1 and ALM-SEL = 1 in the CONFIG register, the SDO/ALARM pin is configured as a reference alarm pin.

8.3.2.2 Solder Heat Reflow

A known behavior of IC reference voltage circuits is the shift induced by the soldering process. Figure 58 shows the effect of solder heat reflow for the DACx0504 internal reference.

Figure 58. Solder Heat Reflow Reference Voltage Shift

DAC80504, DAC70504, DAC60504 SBAS871C – AUGUST 2017 – REVISED JANUARY 2019

NSTRUMENTS

FXAS

www.ti.com

8.3.3 Device Reset Options

8.3.3.1 Power-on-Reset (POR)

The DACx0504 includes a power-on reset function that controls the output voltage at power up. After the V_{DD} and V_{IO} supplies have been established a POR event is issued. The POR causes all registers to initialize to their default values and communication with the device is valid only after a 250 µs power-on-reset delay. The default value for all DACs is either zero-code or midscale-code as determined by the RSTSEL pin. Each DAC channel remains at the power-up voltage until a valid command is written to it.

The POR circuit requires specific supply levels to discharge the internal capacitors and to reset the device on power up, as indicated in Figure 59 and Figure 60. In order to initiate a POR event, V_{DD} or V_{IO} must be below their corresponding low thresholds for at least 100 µs. If V_{DD} and V_{IO} remain above their specified high threshold a POR event will not occur. When the supplies drop below their high threshold but remain over the lower one (shown as the undefined region), the device may or may not reset under all specified temperature and power-supply conditions.

Figure 59. Threshold Levels for V_{DD} POR Circuit

Figure 60. Threshold Levels for V_{IO} POR Circuit

8.3.3.2 Software Reset

A device software reset event is initiated by writing the reserved code 0x1010 to SOFT-RESET in the TRIGGER register. The software reset command is triggered on the \overline{CS} rising edge of the instruction. A software reset initiates a POR event.

8.4 Device Functional Modes

8.4.1 Stand-Alone Operation

A serial interface access cycle is initiated by asserting the \overline{CS} pin low. The serial clock SCLK can be a continuous or gated clock. SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is 24 bits long with error checking disabled and 32 bits long with error checking enabled, thus the \overline{CS} pin must stay low for at least 24 or 32 SCLK falling edges. The access cycle ends when the \overline{CS} pin is de-asserted high. If the access cycle contains less than the minimum clock edges, the communication is ignored. If the access cycle contains more than the minimum clock edges are present, only the last 24 or 32 bits are used by the device. When \overline{CS} is high, the SCLK and SDI signals are blocked and the SDO pin is in a Hi-Z state.

In an error checking disabled access cycle (24-bits long) the first byte input to SDI is the instruction cycle which identifies the request as a read or write command and the 4-bit address to be accessed. The following bits in the cycle form the data cycle, as shown in Table 2.

BIT	FIELD	DESCRIPTION
23	RW	Identifies the communication as a read or write command to the addressed register. $R/W = 0$ sets a write operation. $R/W = 1$ sets a read operation.
22:20	Reserved	Reserved bits. Must be filled with zeros.
19:16	A[3:0]	Register address. Specifies the register to be accessed during the read or write operation.
15:0	DI[15:0]	Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with address A[3:0]. If a read command, the data cycle bits are don't care values.

Table 2. Serial Interface Access Cycle

A read operation is initiated by issuing a read command access cycle. After the read command, a second access cycle must be issued to get the requested data, as shown in Table 3. Data are clocked out on SDO pin either on the falling edge or rising edge of SCLK according to the FSDO bit in the CONFIG register.

BIT	FIELD	DESCRIPTION	
23	RW	Echo RW from previous access cycle.	
22:20	Reserved	bits 22:20 from previous access cycle (all zeros).	
19:16	A[3:0]	Echo address from previous access cycle.	
15:0	DO[15:0]	Readback data requested on previous access cycle.	

Table 3. SDO Output Access Cycle

DAC80504, DAC70504, DAC60504 SBAS871C – AUGUST 2017 – REVISED JANUARY 2019

DAC80504, DAC70504, DAC60504

SBAS871C -AUGUST 2017-REVISED JANUARY 2019

NSTRUMENTS

FXAS

8.4.2 Daisy-Chain Operation

For systems that contain more than one DACx0504 devices, the SDO pin can be used to daisy-chain them together. Daisy-chain operation is useful in reducing the number of serial interface lines.

The first falling edge on the \overline{CS} pin starts the operation cycle. If more than 24 SCLK pulses are applied while the \overline{CS} pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output of the first device to the SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system requires 24 clock pulses. As a result the total number of clock cycles must be equal to 24 × N, where N is the total number of DACx0504 devices in the daisy chain. When the serial transfer to all devices is complete the \overline{CS} signal is taken high. This action transfers the data from the serial peripheral interface (SPI) shift registers to the internal registers of each device in the daisy chain and prevents any further data from being clocked into the input shift register.

Figure 61. Daisy-Chain Layout

8.4.3 Frame Error Checking

If the DACx0504 is used in a noisy environment, error checking can be used to check the integrity of SPI data communication between the device and the host processor. This feature can be enabled by setting the CRC-EN bit in the CONFIG register.

The error checking scheme is based on the CRC-8-ATM (HEC) polynomial $x^8 + x^2 + x + 1$ (that is, 100000111). When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data are appended with an 8-bit CRC polynomial by the host processor before feeding it to the device, as shown in Table 4. In all serial interface readback operations the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.

BIT	FIELD	DESCRIPTION	
31	RW	Identifies the communication as a read or write command to the addressed register. $R/W = 0$ sets a write operation. $R/W = 1$ sets a read operation.	
30	CRC-ERROR	Reserved bit. Set to zero.	
29:28	Reserved	served bits. Must be filled with zeros.	
27:24	A[3:0]	Register address. Specifies the register to be accessed during the read or write operation.	
23:8	DI[15:0]	Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with address A[3:0]. If a read command, the data cycle bits are don't care values.	
7:0	CRC	8-bit CRC polynomial.	

Table 4. Error C	Checking Serial	Interface	Access Cycle
------------------	-----------------	-----------	--------------

The DACx0504 decodes the 32-bit access cycle to compute the CRC remainder on \overline{CS} rising edges. If no error exists, the CRC remainder is zero and data are accepted by the device.

A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a second access cycle can be issued to determine the error checking result (CRC-ERROR bit) on the SDO pin, as shown in Table 5. Additionally, by setting ALM-EN = 1 and ALM-SEL = 0 in the CONFIG register, the SDO/ALARM pin is configured as a CRC alarm pin.

BIT	FIELD	DESCRIPTION	
31	RW	Echo RW from previous access cycle (RW = 0).	
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.	
29:28	Reserved	bits 29:28 from previous access cycle (all zeros).	
27:24	A[3:0]	address from previous access cycle.	
23:8	DO[15:0]	Echo data from previous access cycle.	
7:0	CRC	Calculated CRC value of bits 31:8.	

Table 5. Write Operation Error Checking Cycle

A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The error check result (CRC-ERROR bit) from the read command is <u>output</u> on the SDO pin, as shown in Table 6. As in the case of a write operation failing the CRC check, the SDO/ALARM pin if configured as a CRC alarm pin can be used to indicate a read command CRC failure.

Table 6. Read Operation Error Checking Cycle

BIT	FIELD	DESCRIPTION	
31	RW	Echo RW from previous access cycle (RW = 1).	
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.	
29:28	Reserved	bits 29:28 from previous access cycle (all zeros).	
27:24	A[3:0]	Echo address from previous access cycle.	
23:8	DO[15:0]	Readback data requested on previous access cycle.	
7:0	CRC	Calculated CRC value of bits 31:8.	

8.4.4 Power-Down Mode

The DACx0504 DAC output amplifiers and internal reference can be independently powered down through the CONFIG register. At power-up all output channels and the device internal reference are active by default. A DAC output channel in power-down mode is connected internally to GND through a 1-k Ω resistor.

8.5 Programming

The DACx0504 is controlled through a flexible four-wire serial interface that is compatible with SPI type interfaces used on many microcontrollers and DSP controllers. The interface provides read and write access to all DACx0504 registers and can also be configured to daisy-chain multiple devices for write operations. The DACx0504 incorporates an optional error checking mode to validate SPI data communication integrity in noisy environments. Table 7 shows the SPI timing requirements. Figure 62 and Figure 63 show the SPI write and read timing diagrams, respectively. Figure 64 shows the digital logic timing diagram.

Table 7. Programmin	g Timing	Requirements ⁽¹⁾
---------------------	----------	-----------------------------

		V _{IO} = -	1.7 V to 2.7 V		V _{IO} = 2	2.7 V to 5.5 V	/	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
SERIAL INTE	RFACE – WRITE OPERATION							
f _{SCLK}	SCLK frequency			50			50	MHz
tSCLKHIGH	SCLK high time	9			9			ns
t _{SCLKLOW}	SCLK low time	9			9			ns
t _{SDIS}	SDI setup	5			5			ns
t _{SDIH}	SDI hold	10			10			ns
t _{CSS}	CS to SCLK falling edge setup	13			13			ns
t _{CSH}	SCLK falling edge to CS rising edge	10			10			ns
t _{CSHIGH}	CS high time	15			15			ns
tCSIGNORE	SCLK falling edge to CS ignore	7			7			ns
	RFACE – READ AND DAISY CHAIN OPERATION, FS	SDO = 0						
f _{SCLK}	SCLK frequency			12			18	MHz
t _{SCLKHIGH}	SCLK high time	35			25			ns
t _{SCLKLOW}	SCLK low time	35			25			ns
t _{SDIS}	SDI setup	5			5			ns
t _{SDIH}	SDI hold	10			10			ns
t _{css}	CS to SCLK falling edge setup	32			20			ns
t _{CSH}	SCLK falling edge to CS rising edge	10			10			ns
t _{CSHIGH}	CS high time	15			15			ns
tSDODLY	SDO output delay from SCLK rising edge	3.5		33.5	3.5		23	ns
t _{SDODZ}	SDO driven to tri-state	0		30	0		25	ns
t _{CSIGNORE}	SCLK falling edge to CS ignore	7			7			ns
	RFACE - READ AND DAISY CHAIN OPERATION, FS	SDO = 1						
f _{SCLK}	SCLK frequency			20			25	MHz
t _{SCLKHIGH}	SCLK high time	22			18			ns
t _{SCLKLOW}	SCLK low time	22			18			ns
t _{SDIS}	SDI setup	5			5			ns
t _{SDIH}	SDI hold	10			10			ns
t _{CSS}	CS to SCLK falling edge setup	32			20			ns
t _{CSH}	SCLK falling edge to \overline{CS} rising edge	10			10			ns
t _{CSHIGH}	CS high time	15			15			ns
t _{SDODLY}	SDO output delay from SCLK falling edge	3.5		45	3.5		32	ns
t _{SDODZ}	SDO driven to tri-state	0		30	0		25	ns
t _{CSIGNORE}	SCLK falling edge to CS ignore	7			7			ns
DIGITAL LOG	SIC						1	
t _{RSTDLYPOR}	POR reset delay		170	250		170	250	μs
t _{DACWAIT}	Sequential DAC output updates	1			1			μs
t _{LDACS}	LDAC setup	0			0			ns
t _{LDACH}	LDAC hold	5			5			ns

(1) All input signals are specified at $t_R = t_F = 1$ ns/V (10% to 90% of V_{IO}), timed from a voltage level of (V_{IL} + V_{IH}) / 2, V_{DD} = 2.7 V to 5.5 V, V_{IO} = 1.7 V to 5.5 V, V_{REFIN} = 1.25 V to 5.5 V, SDO loaded with 20 pF, and T_A = -40°C to +125°C (unless otherwise noted)

Figure 62. Serial Interface Write Timing Diagram

Figure 63. Serial Interface Read Timing Diagram

Figure 64. Digital Logic Timing Diagram

DAC80504, DAC70504, DAC60504 SBAS871C - AUGUST 2017 - REVISED JANUARY 2019

www.ti.com

NSTRUMENTS

Texas

8.6 Register Map

DEOLOTED	TYPE	RESET	A	DRE	SS BI	TS								DATA	BITS							
REGISTER	TTPE	RESET	A3	A2	A1	A0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
NOP	w	0000	0	0	0	0		NOP														
DEVICE ID	R	_	0	0	0	1		DEVICEID VE							VERS	IONID						
SYNC	R/W	FF00	0	0	1	0		RESERVED DACX-BRDCAST-EN RESERVED DACX-SY						YNC-EN	١							
CONFIG	R/W	0000	0	0	1	1	RESE	RVED ALM ALM CRC F D PWD RESERVED DACX-PW						WDWN	I							
GAIN	R/W	0000	0	1	0	0		RESERVED RESERVED BUFFx-G						-GAIN								
TRIGGER	w	0000	0	1	0	1					RI	ESERVE	ED					L DAC	S	OFT-RE	ESET[3:	0]
BRDCAST	R/W	0000	0	1	1	0							BR	DCAST-	DATA[1	5:0]						
STATUS	R/W	0000	0	1	1	1							R	ESERVE	Ð							REF ALM
DAC0	R/W	0000	1	0	0	0							[DAC0-DA	ATA[15:	0]						
DAC1	R/W	0000	1	0	0	1							[DAC1-DA	ATA[15:	0]						
DAC2	R/W	0000	1	0	1	0		DAC2-DATA[15:0]														
DAC3	R/W	0000	1	0	1	1		DAC3-DATA[15:0]														
All Others	_	_	—	—	—	_								RESE	RVED							

Table 8. Register Map

8.6.1 NOP Register (address = 0x00) [reset = 0x0000]

Figure 65. NOP Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							NC	ЭР							
							٧	V							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. NOP Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	NOP	W	0x0000	No operation. Write 0000h for proper no-operation command

8.6.2 DEVICE ID Register (address = 0x01) [reset = 0x---]

Figure 66. DEVICE ID Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						DEVI	CEID							VERS	SIONID
						F	२								R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. DEVICE ID Field Descriptions

Bit	Field	Туре	Reset	Description
15:2	DEVICEID	R		Device ID: D15 Reserved - 0 D14:12 Resolution - 000 (16-bit); 001 (14-bit); 010 (12-bit) D11:4 Channels - 0100 (4 channels) D7 Reset - Determined by RSTSEL pin. 0 (reset to zero); 1 (reset to midscale) D6:2 Reserved - 00101
1:0	VERSIONID	R	11	Version ID. Subject to change

8.6.3 SYNC Register (address = 0x2) [reset = 0xFF00]

15	14	13	12	11	10	9	8
	Rese	erved		DAC3- BRDCAST-EN	DAC2- BRDCAST-EN	DAC1- BRDCAST-EN	DAC0- BRDCAST-EN
	-	-		R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
	Rese	erved		DAC3-SYNC- EN	DAC2-SYNC- EN	DAC1-SYNC- EN	DAC0-SYNC- EN
	_	_		R/W	R/W	R/W	R/W

Figure 67. SYNC Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. SYNC Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:12	Reserved	—	1111	Reserved for factory use
11	DAC3-BRDCAST-EN	R/W	1	When set to 1 the corresponding DAC is set to update its output
10	DAC2-BRDCAST-EN	R/W	1	after a serial interface write to the BRDCAST register. When cleared to 0 the corresponding DAC output remains
9	DAC1-BRDCAST-EN	R/W	1	unaffected after a serial interface write to the BRDCAST
8	DAC0-BRDCAST-EN	R/W	1	register.
7:4	Reserved	—	0000	Reserved for factory use
3	DAC3-SYNC-EN	R/W	0	When set to 1 the corresponding DAC output is set to update in
2	DAC2-SYNC-EN	R/W	0	response to an LDAC trigger (synchronous mode). When cleared to 0 the corresponding DAC output is set to
1	DAC1-SYNC-EN	R/W	0	update immediately on a \overline{CS} rising edge (asynchronous mode).
0	DAC0-SYNC-EN	R/W	0	

8.6.4 CONFIG Register (address = 0x3) [reset = 0x0000]

15	14	13	12	11	10	9	8
Rese	erved	ALM-SEL	ALM-EN	CRC-EN	FSDO	DSDO	REF-PWDWN
-	—	R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
	Res	erved		DAC3-PWDWN	DAC2-PWDWN	DAC1-PWDWN	DAC0-PWDWN
				R/W	R/W	R/W	R/W

Figure 68. CONFIG Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:14	Reserved	_	00	Reserved for factory use
13	ALM-SEL	R/W	0	ALARM select. 0: ALARM pin is CRC-ERROR 1: ALARM pin is REF-ALARM
12	ALM-EN	R/W	0	Configure SDO/ALARM pin. When 1: SDO/ALARM pin is an active-low, open-drain, alarm pin. An external 10 k Ω pullup resistor to V _{IO} is required. FSDO and DSDO bits are ignored. When 0: SDO/ALARM pin is a serial interface, push-pull, SDO pin
11	CRC-EN	R/W	0	CRC enable bit. Set to 1 to enable CRC. Set to 0 to disable
10	FSDO	R/W	0	Fast SDO bit (half-cycle speedup). When 0, SDO updates on an SCLK rising edge. When 1, SDO updates a half-cycle earlier, during an SCLK falling edge.
9	DSDO	R/W	0	Disable SDO bit. When 1, SDO is always tri-stated. When 0, SDO is driven while \overline{CS} is low, and tri-stated while \overline{CS} is high
8	REF-PWDWN	R/W	0	When set to 1 disables the device internal reference
7:4	Reserved	_	0000	Reserved for factory use
3	DAC3-PWDWN	R/W	0	When set to 1 the corresponding DAC is set in power-down
2	DAC2-PWDWN	R/W	0	mode and its output is connected to GND through a 1 k Ω internal resistor.
1	DAC1-PWDWN	R/W	0	
0	DAC0-PWDWN	R/W	0	

DAC80504, DAC70504, DAC60504

SBAS871C -AUGUST 2017-REVISED JANUARY 2019

8.6.5 GAIN Register (address = 0x04) [reset = 0x---]

15	14	13	12	11	10	9	8
			Reserved				REFDIV-EN
			—				R/W
7	6	5	4	3	2	1	0
	Rese	erved		BUFF3-GAIN	BUFF2-GAIN	BUFF1-GAIN	BUFF0-GAIN
	_	_		R/W	R/W	R/W	R/W

Figure 69. GAIN Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. GA	IN Reaister	Field D	Descriptions
--------------	-------------	---------	--------------

Bit	Field	Туре	Reset	Description
15:9	Reserved	1,960	0	Reserved for factory use.
15.9	Reserved		0	Reserved for factory use.
8	REFDIV-EN	R/W	0/1	When set to 1 the reference voltage is internally divided by a factor of 2. When cleared to 0 the reference voltage is unaffected. Default value is determined by the REFDIV pin.
7:4	Reserved	—	0000	Reserved for factory use
3	BUFF3-GAIN	R/W	0/1	When set to 1 the buffer amplifier for corresponding DAC has a
2	BUFF2-GAIN	R/W	0/1	gain of 2. When cleared to 0 the buffer amplifier for corresponding DAC
1	BUFF1-GAIN	R/W	0/1	has a gain of 1.
0	BUFF0-GAIN	R/W	0/1	Default value is determined by the GAIN pin.

8.6.6 TRIGGER Register (address = 0x05) [reset = 0x0000]

Figure 70. TRIGGER Register

15		4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								LDAC		SOFT-RE	SET[3:0]				
						_						W		V	V	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. TRIGGER Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:5	Reserved	—	0	Reserved for factory use.
4	LDAC	W	0	Set this bit to 1 to synchronously load those DACs that have been set in synchronous mode in the SYNC register.
3:0	SOFT-RESET[3:0]	W	0x0	When set to the reserved code 1010 resets the device to its default state.

eset = 0x---]

TEXAS INSTRUMENTS

www.ti.com

8.6.7 BRDCAST Register (address = 0x6) [reset = 0x0000]

Figure 71. BRDCAST Register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BRDCAST-DATA[15:0]															
ſ		DAV														

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. BRDCAST Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	BRDCAST-DATA[15:0]	R/W	0x0000	Writing to the BRDCAST register forces those DAC channels that have been set to broadcast in the SYNC register to update their active data register with the BRDCAST-DATA value. Data are MSB aligned in straight binary format and follows the format below: DAC80504: { DATA[15:0] } DAC70504: { DATA[15:0], x, x, } DAC60504: { DATA[11:0], x, x, x, x, x } x - Don't care bits

8.6.8 STATUS Register (address = 0x7) [reset = 0x0000]

Figure 72. STATUS Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										REF- ALM					
												R/W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:1	Reserved	—	0	Reserved for factory use.
0	REF-ALM	R	0	Reference alarm bit. Reads 1 when the difference between V_{REF} /DIV and V_{DD} is below the required minimum analog threshold. Reads 0 otherwise.

8.6.9 DACx Register (address = 0x8 to 0xF) [reset = 0x0000 or 0x8000]

Figure 73. DACx Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DACx-DATA[15:0]														
	R/W														

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. DACx Register Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	DACx-DATA[15:0]	R/W	0x0000 or 0x8000	Stores the 16- or 14-bit data to be loaded to DACx in MSB aligned straight binary format. The default value is determined by the RSTSEL pin. Data follows the format below: DAC80504: { DATA[15:0] } DAC70504: { DATA[13:0], x, x } DAC60504: { DATA[11:0], x, x, x, x } x - Don't care bits

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The high linearity, small package size and wide temperature range make the DACx0504 suitable in applications such as optical networking, wireless infrastructure, industrial automation and data acquisition systems. The device incorporates a 2.5 V internal reference with an internal reference divider circuit that enables full-scale DAC output voltages of 1.25 V, 2.5 V, or 5 V.

9.1.1 Interfacing to a Microcontroller

Figure 74 displays a typical serial interface that may be observed when connecting the DACx0504 SPI serial interface to a (master) microcontroller type platform. The setup for the interface is as follows: the microcontroller output SPI CLK drives the SCLK pin of the DACx0504, while the DACx0504 SDI pin is driven by the MOSI pin of the microcontroller. The CS pin of the DACx0504 can be asserted from a general program input/output pin of the microcontroller. When data are to be transmitted to the DACx0504, the CS pin is taken low. The data from the microcontroller is then transmitted to the DACx0504, totaling 24 bits latched into the DACx0504 device through the falling edge of SCLK. CS is then brought high after the completed write. The DACx0504 requires data with the MSB as the first bit received.

Copyright © 2017, Texas Instruments Incorporated

Figure 74. Typical Serial Interface

www.ti.com

Application Information (continued)

9.1.2 Programmable Current Source Circuit

The DACx0504 can be integrated into the circuit in Figure 75 to implement an improved Howland current pump for precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two features of the circuit. With a matched resistor network, the load current of the circuit is shown by Equation 2.

$$I_{L} = \frac{\left(R2 + R3\right)/R1}{R3} \times V_{REF} \times \frac{CODE}{2^{n}}$$
(2)

The value of R3 in Equation 2 can be reduced to increase the output current drive of U3. U3 can drive ± 20 mV in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the circuit compensation capacitor C1 in the circuit is not suggested as a result of the change in the output impedance Z₀, according to Equation 3.

$$Z_{O} = \frac{(R1')(R3)(R1+R2)}{R1(R2'+R3')-R1'(R2+R3)}$$
(3)

As shown in Equation 3, with matched resistors, Z_0 is infinite and the circuit is optimum for use as a current source. However, if unmatched resistors are used, Z_0 is positive or negative with negative output impedance being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a value of several pF is suggested.

Figure 75. Programmable Bidirectional Current Source Circuit

The DACx0504 is designed for single-supply operation; however, a bipolar output is also possible using the circuit shown in Figure 76.

Figure 76. Bipolar Operation Using the DACx0504

9.2.1 Design Requirements

The circuit shown in Figure 76 gives a bipolar output voltage at V_{OUT} . When GAIN = 1, V_{OUT} can be calculated using Equation 4:

$$V_{OUT}(CODE) = \left\lfloor \left(V_{REF} \times \frac{CODE}{2^n} \right) \left(1 + \frac{R_3}{R_2} + \frac{R_3}{R_1} \right) - \left(V_{REF} \times \frac{R_3}{R_1} \right) \right\rfloor$$

where

- V_{OUT}(CODE) = output voltage versus code
- CODE = 0 to $2^n 1$. This is the digital code loaded to the DAC
- V_{REF} = reference voltage applied to the DACx0504
- n = resolution in bits

Table 18. Design Parameters

PARAMETER	VALUE
V _{OUT}	±10 V
V _{REF}	2.5 V
n	12

9.2.2 Detailed Design Procedure

The bipolar output span can be calculated through Equation 4 by defining a few parameters, the first being the value for the reference voltage. Once a reference voltage is chosen, the gain resistors can be set accordingly by determining the desired V_{OUT} at code 0 and code 2ⁿ. For a V_{REF} of 2.5 V and a desired output voltage range of ±10 V the calculation is as follows.

CODE = 0:

$$V_{OUT}(0) = -\left(V_{REF} \times \frac{R_3}{R_1}\right) = -\left(2.5V \times \frac{R_3}{R_1}\right)$$

Setting the equation to minimum output span, $V_{OUT}(0) = -10$ V, will reduce the equation to: $R_3/R_1 = 4$:

CODE = 4096:

Setting the equation to maximum output scan, $V_{OUT}(4096) = 10$ V, and $R_3/R_1 = 4$ will reduce the equation to: $R_3/R_2 = 3$

It is important to note that the maximum code of a 12-bit DAC is 4095; code 4096 was used to simplify the equation above. For practical use, the true output span will encompass a range of -10 V to (10 V - 1 LSB), which in this case is -10 V to 9.995 V.

ISTRUMENTS

(5)

www.ti.com

9.2.3 Application Curve

The ±10 V output span with a reference voltage of 2.5 V can be achieved by using values of 30 k Ω , 10 k Ω , and 7.5 k Ω for R3, R2, and R1, respectively. A curve to illustrate this output span is shown in Figure 77. For this example, 1% tolerance resistors were used in evaluating bipolar operation.

Figure 77. Bipolar Operation

10 Power Supply Recommendations

The DACx0504 operates within the specified V_{DD} supply range of 2.7 V to 5.5 V, and V_{IO} supply range of 1.7 V to 5.5 V. The DACx0504 does not require specific supply sequencing.

The V_{DD} supply must be well-regulated and low-noise. Switching power supplies and dc-dc converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. In order to further minimize noise from the power supply, include a 1- μ F to 10- μ F capacitor and 0.1- μ F bypass capacitor. The current consumption on the V_{DD} pin, the short-circuit current limit, and the load current for the device is listed in the *Electrical Characteristics*. The power supply must meet the aforementioned current requirements.

11 Layout

11.1 Layout Guidelines

A precision analog component requires careful layout, the list below provides some insight into good layout practices.

- Bypass all power supply pins to ground with a low-ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 0.1-µF to 0.22-µF ceramic with a X7R or NP0 dielectric.
- Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize performance.
- Use a high-quality ceramic type NP0 or X7R for its optimal performance across temperature, and very low dissipation factor.
- The digital and analog sections must have proper placement with respect to the digital pins and analog pins of the DACx0504 device. The separation of analog and digital blocks minimizes coupling into neighboring blocks, as well as interaction between analog and digital return currents.

11.2 Layout Example

Figure 78. DACx0504 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following: DACx0504 Evaluation Module User's Guide

12.2 Related Links

Table 19 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

PARTS	PRODUCT FOLDER	PRODUCT FOLDER ORDER NOW		TOOLS & SOFTWARE	SUPPORT & COMMUNITY				
DAC80504	Click here	Click here	Click here	Click here	Click here				
DAC70504	Click here	Click here	Click here	Click here	Click here				
DAC60504	Click here	Click here	Click here	Click here	Click here				

Table 19. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2017–2019, Texas Instruments Incorporated

25-Jan-2019

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DAC60504BRTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	654B	Samples
DAC60504BRTET	ACTIVE	WQFN	RTE	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	654B	Samples
DAC70504RTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	70504	Samples
DAC70504RTET	ACTIVE	WQFN	RTE	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	70504	Samples
DAC80504RTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	(80504, 854)	Samples
DAC80504RTET	ACTIVE	WQFN	RTE	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	(80504, 854)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

25-Jan-2019

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC60504BRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC60504BRTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC70504RTER	WQFN	RTE	16	3000	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC70504RTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC80504RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
DAC80504RTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jan-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC60504BRTER	WQFN	RTE	16	3000	370.0	355.0	55.0
DAC60504BRTET	WQFN	RTE	16	250	195.0	200.0	45.0
DAC70504RTER	WQFN	RTE	16	3000	195.0	200.0	45.0
DAC70504RTET	WQFN	RTE	16	250	195.0	200.0	45.0
DAC80504RTER	WQFN	RTE	16	3000	370.0	355.0	55.0
DAC80504RTET	WQFN	RTE	16	250	195.0	200.0	45.0

MECHANICAL DATA

- A. All linear almensions are in millimeters. Dimensioning and tolerancing per A B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

RTE (S-PWQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated