

CY7C1021BN CY7C10211BN

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive-A: –40°C to 85°C
 - Automotive-E: –40°C to 125°C
- High speed
 - t_{AA} = 10 ns (Commercial)
 - t_{AA} = 15 ns (Automotive)
- · CMOS for optimum speed/power
- Low active power
 - 825 mW (max.)
- · Automatic power-down when deselected
- · Independent control of upper and lower bits
- Available in Pb free and non Pb free 44-pin TSOP II and 44-pin 400-mil-wide SOJ

Functional Description^[1]

The CY7C1021BN/CY7C10211BN is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Logic Block Diagram

(BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified <u>on the</u> address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A₀ through A₁₅).

1-Mbit (64K x 16) Static RAM

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in <u>a</u> high-impedance state when the device is de<u>selected (CE</u> HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disable<u>d (BHE, BLE HIGH)</u>, or during a write operation (CE LOW, and WE LOW).

The CY7C1021BN/CY7C10211BN is available in standard 44-pin TSOP Type II and 44-pin 400-mil-wide SOJ packages. Customers should use part number CY7C10211BN when ordering parts with 10 ns t_{AA} , and CY7C1021BN when ordering 12 ns and 15 ns t_{AA} .

PirConfigurations

SOJ / TSOP II **Top View** 44 🗖 A5 A₄ 43 🛛 A₆ A₃ E 42 A7 41 OE A₂ <u>L</u> 3 A₁ E 40 BHE 39 BLE 38 I/O₁₆ I/O1 E 37 I/O₁₅ I/O₂ [8 ³⁶ I/O₁₄ I/O₃ [9 ³⁵ / I/O₁₃ ³⁴ V_{SS} I/O₄ [10 11 ³³ V_{CC} Vss 12 32 | I/O₁₂ 31 | I/O₁₁ I/O₅ 13 I/O₆ - 14 30 || I/O₁₀ 29 || I/O₉ 28 || NC I/O7 L 15 I<u>∕O8</u> □ 16 WE 🛛 17 27 A₈ 26 A₉ 25 A₁₀ A₁₅ 18 19 A₁₄ A₁₃ 🗆 20 $\Box A_{11}$ A_{12} 21 24 NĈ 23 🗌 NC

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com

Cypress Semiconductor Corporation Document #: 001-06494 Rev. *A 198 Champion Court •

San Jose, CA 95134-1709 • 408-943-2600 Revised September 28, 2006

Selection Guide

		7C10211B-10	7C1021B-12	7C1021B-15
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)	Com'l / Ind'l	150	140	130
	Automotive-A			130
	Automotive-E			130
Maximum CMOS Standby Current (mA)	Com'l / Ind'l	10	10	10
	Com'l / Ind'l (L version)	0.5	0.5	0.5
	Automotive-A (L version)			0.5
	Automotive-E			15

Pin Definitions

Pin Name	SOJ, TSOP-Pin Number	I/О Туре	Description
A ₀ -A ₁₅	1-5,18-21, 24-27, 42-44	Input	Address Inputs used to select one of the address locations.
I/O ₁ -I/O ₁₆	7–10, 13–16, 29–32, 35–38	Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation.
NC	22, 23, 28	No Connect	No Connects. Not connected to the die.
WE	17	Input/Control	Write Enable Input, active LOW. When selected LOW, a Write is conducted. When deselected HIGH, a Read is conducted.
CE	6	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
BHE, BLE	40, 39	Input/Control	Byte Write Select Inputs, active LOW. BHE controls I/O_{16} -I/O ₉ , BLE controls I/O_8 -I/O ₁ , .
ŌĒ	41	Input/Control	Output Enable, active LOW . Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
V _{SS}	12, 34	Ground	Ground for the device. Should be connected to ground of the system.
V _{CC}	11, 33	Power Supply	Power Supply inputs to the device.

Maximum Ratings

(Above which the useful life may be impaired. For user guide- ines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} Relative to $GND^{[2]}$ –0.5V to +7.0V
DC Voltage Applied to Outputs n High Z State ^[2] –0.5V to V _{CC} +0.5V
n High Z State ^[2] –0.5V to V _{CC} +0.5V
DC Input Voltage ^[2] 0.5V to V _{CC} +0.5V
Current into Outputs (LOW)20 mA

Electrical Characteristics Over the Operating Range

Static Discharge Voltage	>2001	V
(per MIL-STD-883, Method 3015)		

Latch-Up Current>200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[3]	V _{cc}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	–40°C to +85°C	
Automotive-A	–40°C to +85°C	
Automotive-E	–40°C to +125°C	

		т	est	-10		-1	2	-1	5	
Parameter	Description		litions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -	–4.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8	3.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	6.0	2.2	6.0	2.2	6.0	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage	$GND \le V_I \le V_{CC}$	Com'l / Ind'l	-1	+1	-1	+1	-1	+1	μΑ
	Current	nt	Automotive-A					-1	+1	μΑ
			Automotive-E					-4	+4	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{Itput Leakage} \text{GND} \leq V_{1} \leq V_{CC}, \\ \text{Output Disabled} \end{array}$	Com'l / Ind'l	-1	+1	-1	+1	-1	+1	μΑ
			Automotive-A					-1	+1	μΑ
			Automotive-E					-4	+4	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l / Ind'l		150		140		130	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ f = f _{MAX} = 1/t _{RC}	Automotive-A						130	
			Automotive-E						130	
I _{SB1}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l / Ind'l		40		40		40	mA
	Power-Down Current—TTL	$\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or	Automotive-A						40	
	Inputs	$V_{IN} \le V_{IL}, f = f_{MAX}$	Automotive-E						50	
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l / Ind'l		10		10		10	mA
	Power-Down Current—	$\overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$	Com'l / Ind'l (L)		0.5		0.5		0.5	
	CMOS Inputs	or $V_{IN} \le 0.3V$, f = 0	Automotive-A (L)						0.5	
			Automotive-E						15]

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V	8	pF

Notes: 2. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 0.5V for pulse durations of less than 20 ns. 3. T_A is the "Instant On" case temperature. 4. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[4]

Parameter	Description	Test Conditions	44-pin SOJ	44-pin TSOP-II	Unit
Θ_{JA}	(Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal	64.32	76.89	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)	impedance, per EIA / JESD51.	31.03	14.28	°C/W

AC Test Loads and Waveforms

Switching Characteristics^[5] Over the Operating Range

		7C102	11B-10	7C1021B-12		7C1021B-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•		•	•		•	•	•
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		7	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		5		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		5		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12		15	ns
t _{DBE}	Byte Enable to Data Valid		5		6		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns
t _{HZBE}	Byte Disable to High Z		5		6		7	ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified

b) The conductive assume signal transition time of 5 hs of less, timing reference reversion 1.50, input pulse reversion to 5.00, and output rotating of the specified of the specified in the of 5 hs of less, timing reference reversion 1.50, input pulse reversion to 5.00, and output rotating of the specified of the specified in the of 5 hs of less, timing reference reversion 1.50, input pulse reversion to 5.00, and output rotating of the specified of the specified in the of 5 hs of less, thing reference reversion 1.50, input pulse reversion to 5.00, and output rotating of the specified o

Switching Characteristics^[5] Over the Operating Range (continued)

		7C102	11B-10	7C1021B-12		7C1021B-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[8]	-	1		1				
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE}	CE LOW to Write End	8		9		10		ns
t _{AW}	Address Set-Up to Write End	7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{SD}	Data Set-Up to Write End	5		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		5		6		7	ns
t _{BW}	Byte Enable to End of Write	7		8		9		ns

Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[10, 11]

Notes:

The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

9. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BHE} = V_{IL}$. 10. WE is HIGH for read cycle.

Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[12, 13]

Write Cycle No. 2 (BLE or BHE Controlled)

<sup>Notes:
11. Address valid prior to or coincident with CE transition LOW.
12. Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.</sup>

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ –I/O ₁₆	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read - All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read - Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write - All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write - Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	10 CY7C10211BN-10ZXC		44-pin TSOP Type II	Commercial
12	CY7C1021BN-12VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021BN-12VXC		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-12ZC	51-85087	44-pin TSOP Type II	
	CY7C1021BN-12ZXC		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BN-12VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021BN-12VXI	1	44-pin (400-Mil) Molded SOJ (Pb-Free)	
15	CY7C1021BN-15VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021BN-15VXC	1	44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BNL-15VXC	1	44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1021BN-15ZXC	1	44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZC	1	44-pin TSOP Type II	
	CY7C1021BNL-15ZXC	1	44-pin TSOP Type II (Pb-Free)	
	CY7C1021BN-15VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021BN-15VXI	1	44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-15ZI	51-85087	44-pin TSOP Type II	
	CY7C1021BNL-15ZI	1	44-pin TSOP Type II	
	CY7C1021BN-15ZXI	1	44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZXI		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZSXA	51-85087	44-pin TSOP Type II (Pb-Free)	Automotive-A
	CY7C1021BN-15VXE	51-85082	44-pin (400-Mil) Molded SOJ (Pb-Free)	Automotive-E
	CY7C1021BN-15ZSXE	51-85087	44-pin TSOP Type II (Pb-Free)	

Package Diagrams

44-pin (400-Mil) Molded SOJ (51-85082)

Package Diagrams (continued)

44-Pin TSOP II (51-85087)

All products and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C1021BN/CY7C10211BN (64K x 16) Static RAM Document Number: 001-06494				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	423877	See ECN	NXR	New Data Sheet
*A	505726	See ECN	NXR	Removed I _{OS} parameter from DC Electrical Characteristics table. Added Automotive products Updated ordering Information table