

8K x 8 Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive-A: –40°C to 85°C
- High Speed
 - 55 ns
- CMOS for optimum speed/power
- Easy memory expansion with CE₁, CE₂ and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- Available in Pb-free and non Pb-free 28-lead SNC package

Functional Description

The CY6264 is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE_1), an active HIGH chip enable (CE_2), and active LOW output enable (\overline{OE}) and three-state drivers. Both devices have an automatic power-down feature (\overline{CE}_1), reducing the power consumption by over 70% when deselected. The CY6264 is packaged in a 450-mil (300-mil body) SOIC.

An active LOW write enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ inputs are both LOW and CE_2 is HIGH, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}_1$ and $\overline{\text{OE}}$ active LOW, $\overline{\text{CE}}_2$ active HIGH, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to ensure alpha immunity.

Pin Configuration

SOIC Top View							
NC	L.\		T \/				
	1	28	V _{CC}				
A ₄	2	27	WE				
A5	3	26	CE ₂				
A ₆	4	25	A ₃				
A7	5	24	A2				
A8	6	23	A1				
Ag	7	22	OE				
A ₁₀	8	21	A ₀				
A ₁₁	9	20	CE1				
A ₁₂	10	19	I/O ₇				
I/O ₀	11	18	I/O ₆				
I/O1	12	17	I/O ₅				
I/O ₂	13	16	I/O4				
GND	14	15	I/O3				

Selection Guide

	Range	-55	-70	Unit
Maximum Access Time		55	70	ns
Maximum Operating Current	Commercial	100	100	mA
	Industrial	260	200	mA
	Automotive-A		200	mA
Maximum CMOS Standby Current	Commercial	15	15	mA
	Industrial	30	30	mA
	Automotive-A		30	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State^[1]......-0.5V to +7.0V DC Input Voltage^[1].....-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	$5V\pm10\%$
Industrial	–40°C to +85°C	
Automotive-A	–40°C to +85°C	

Electrical Characteristics Over the Operating Range

				-55		-70		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[1]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-5	+5	-5	+5	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{I} \leq V_{CC}$, Output Disabled		-5	+5	-5	+5	μA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,I _{OUT} = 0 mA	Com'l		100		100	mA
	Supply Current		Ind'l		260		200	
			Auto-A				200	
I _{SB1}	Automatic CE ₁	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$,	Com'l		20		20	mA
	Power–Down Current	Min. Duty Cycle=100%	Ind'l		50		40	
			Auto-A				40	
I _{SB2}	Automatic CE ₁	$\begin{array}{c} \text{Max. } V_{CC}, \overline{CE}_1 \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or } V_{IN} \leq 0.3V \end{array}$	Com'l		15		15	mA
	Power–Down Current		Ind'l		30		30	1
			Auto-A				30	1

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF

Notes:

1. Minimum voltage is equal to -3.0V for pulse durations less than 30 ns.

2. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[3]

			55	-7		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	·		•	•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE1}	CE ₁ LOW to Data Valid		55		70	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		40		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z	3		5		ns
t _{HZOE}	OE HIGH to High Z ^[4]		20		30	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[5]	5		5		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		5		ns
t _{HZCE}	\overline{CE}_1 HIGH to High Z ^[4, 6] CE ₂ LOW to High Z		20		30	ns
t _{PU}	CE ₁ LOW to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down		25		30	ns
	6]	·				
t _{WC}	Write Cycle Time	50		70		ns
t _{SCE1}	CE ₁ LOW to Write End	40		60		ns
t _{SCE2}	CE ₂ HIGH to Write End	30		50		ns
t _{AW}	Address Set-Up to Write End	40		55		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	25		40		ns
t _{SD}	Data Set-Up to Write End	25		35		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[4]		20		30	ns
t _{LZWE}	WE HIGH to Low Z	5		5		ns

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified IoL/IOH and 30-pF load capacitance.

t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

CY6264

Switching Waveforms Read Cycle No. 1^[7, 8]

Read Cycle No. 2^[9, 10]

Notes:

- 7. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. $CE_2 = V_{IH}$. 8. Address valid prior to or coincident with \overline{CE} transition LOW. 9. \overline{WE} is HIGH for read <u>cy</u>cle. 10. Data I/O is High Z if $\overline{OE} = V_{IH}$, $\overline{CE}_1 = V_{IH}$, or $\overline{WE} = V_{IL}$.

CY6264

Switching Waveforms (continued) Write Cycle No. 1 (WE Controlled)^[8, 10]

Note:

11. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Truth Table

CE ₁	CE ₂	WE	OE	Input/Output	Mode
н	Х	Х	Х	High Z	Deselect/Power-Down
Х	L	Х	Х	High Z	Deselect
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Address Designators

Address Name	Address Function	Pin Number
A4	X3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY6264-55SNXC	51-85092	28-lead (300-mil Narrow Body) SNC (Pb-Free)	Commercial
	CY6264-55SNXI		28-lead (300-mil Narrow Body) SNC (Pb-Free)	Industrial
70	CY6264-70SNC		28-lead (300-mil Narrow Body) SNC	Commercial
	CY6264-70SNXC		28-lead (300-mil Narrow Body) SNC (Pb-Free)	
	CY6264-70SNI		28-lead (300-mil Narrow Body) SNC	Industrial
	CY6264-70SNXI		28-lead (300-mil Narrow Body) SNC (Pb-Free)	
	CY6264-70SNXA		28-lead (300-mil Narrow Body) SNC (Pb-Free)	Automotive-A

Please contact your local Cypress sales representative for availability of these parts

Package Diagram

28-lead (300 mil) SNC Package Outline (Narrow Body) (51-85092)

51-85092-*B

All products and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY6264 8K x 8 Static RAM Document Number: 001-02367								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	384870	See ECN	PCI	Spec # change from 38-00425 to 001-02367				
*A	488954	See ECN	VKN	Added Automotive product Added 55 ns Industrial spec Removed SOIC package from the product offering Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated ordering Information table				