

CY62157DV30 MoBL[®] 8-Mbit (512K x 16) MoBL[®] Static RAM

Features

- Temperature ranges
 Industrial: -40 °C to 85 °C
- Very high speed: 55 ns
- Wide voltage range: 2.20 V–3.60 V
- Pin-compatible with CY62157CV25, CY62157CV30, and CY62157CV33
- Ultra-low active power
 Typical active current: 1.5 mA @ f = 1 MHz
 Typical active current: 12 mA @ f = f_{max}
- Ultra-low standby power
- Easy memory expansion with CE₁, CE₂, and OE features
- Automatic power-down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed/power
- Available in Pb-free and non Pb-free 48-ball fine ball grid array (FBGA), and Pb-free 44-pin thin small outline package (TSOPII) package

Functional Description

The CY62157DV30 is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The <u>device</u> can also be put into stand<u>by</u> mode when deselected (\overline{CE}_1 HIGH or CE_2 LOW or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state wh<u>en:</u> deselected (\overline{CE}_1 HIGH or CE_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE <u>HIGH</u>), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH and WE LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enables ($\overline{CE}_1 LOW$ and $CE_2 \underline{HIGH}$) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on</u> the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

Reading <u>from</u> the device is accomplished by taking <u>Chip</u> Enables (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and <u>Output</u> Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table for a complete description of read and write modes.

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

Logic Block Diagram

198 Champion Court

•

San Jose, CA 95134-1709 • 408-943-2600 Revised October 25, 2010

Contents

Product Portfolio	3
Pin Configuration	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	4
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	5
Data Retention Waveform	5
Switching Waveforms	7
Truth Table10	0

Ordering Information	
Ordering Code Definition	11
Package Diagram	12
Acronyms	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	
Products	
PSoC Solutions	15

Product Portfolio

		Power Dissipation				า					
Product	Range	V _{CC} Range (V)				Standb	y I _{SB2} ,				
Troduct	Range		(ns) f = 1MHz f = 1						(μΑ)		
		Min	Typ ^[1]	Мах		Typ ^[1]	Max	Typ ^[1]	Max	Typ ^[1]	Мах
CY62157DV30LL	Industrial	2.2	3.0	3.6	55, 70	1.5	3	12	15	2	8

Pin Configuration^[2, 3, 4]

44-pin TSOP II Pinout

Top View						
$\begin{array}{c} 0\\ A_{4}\\ A_{3}\\ A_{2}\\ A_{2}\\ A_{2}\\ A_{3}\\ A_{1}\\ A_{3}\\ A_{1}\\ A_{3}\\ A_{1}\\ A_{3}\\ A_{1}\\ A_{1}\\ A_{3}\\ A_{1}\\ A_{1}\\$	44 A5 43 A6 42 AZ 41 OE 39 BLE 39 BLE 38 I/O15 37 I/O14 36 I/O13 34 I/O13 34 I/O13 35 I/O13 34 I/O13 34 I/O13 35 I/O13 34 I/O13 35 I/O13 34 I/O13 35 I/O13 34 I/O13 35 I/O13 34 I/O13 35 I/O13 35 I/O13 36 I/O13 36 I/O13 37 I/O13 37 I/O13 38 I/O13 39 A13 30					

Notes

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C.
 NC pins are not internally connected on the die.
 DNU pins have to be left floating.

4. The 44-TSOPII package device has only one chip enable pin (CE).

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature	–65 °C to + 150 °C
Ambient temperature with power applied	–55 °C to + 125 °C
Supply voltage to ground potential	–0.3 V to V _{CC(max)} + 0.3 V
DC voltage applied to outputs in High-Z State ^[5, 6]	
DC input voltage ^[5, 6]	–0.3 V to $V_{CC(max)}$ + 0.3 V

Output current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device	Range	Ambient Temperature (T _A)	V_{cc} ^[7]
CY62157DV30LL	Industrial	–40 °C to +85 °C	2.20 V to 3.60 V

Electrical Characteristics Over the Operating Range

Deremeter	Description	Test Conditions				-55		Unit
Parameter	Description	lest Conditions			Min	Typ ^[8]	Max	Unit
V _{OH}	Output HIGH	I _{OH} = -0.1 mA	V _{CC} = 2.20 V		2.0	_	-	V
	voltage	I _{OH} = –1.0 mA	V _{CC} = 2.70 V		2.4	—	-	V
V _{OL}	Output LOW	I _{OL} = 0.1 mA	V _{CC} = 2.20 V		-	-	0.4	V
	voltage	I _{OL} = 2.1 mA	V _{CC} = 2.70 V		-	-	0.4	V
V _{IH}	Input HIGH	V _{CC} = 2.2 V to 2.7 V	•		1.8	-	V _{CC} + 0.3	V
	voltage	V _{CC} = 2.7 V to 3.6 V			2.2	-	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage	V _{CC} = 2.2 V to 2.7 V			-0.3	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V			-0.3	-	0.8	V
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$	Ind'I		–1	-	+1	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}$, Output disabled	Ind'l		–1	-	+1	μA
I _{CC}		$f = f_{MAX} = 1/t_{RC}$	V _{CC} = V _{CCmax}	LL	-	12	15	mA
	supply current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels	LL		1.5	3	mA
I _{SB1}	Automatic Power-down current — CMOS inputs	$ \begin{array}{l} \hline CE_1 \geq V_{CC} - 0.2 \ V \ or \ CE_2 \leq 0.2 \ V \ or \\ (BHE \ and \ BLE) \geq V_{CC} - 0.2 \ V, \\ V_{IN} \geq V_{CC} - 0.2 \ V, \ V_{IN} \leq 0.2 \ V \\ f = f_{MAX} (Address \ and \ Data \ Only), \\ f = 0 \ (OE, \ WE), \ V_{CC} = 3.60V \end{array} $	Ind'l	LL	-	2	8	μΑ
I _{SB2}	Automatic Power-down current -CMOS inputs		Ind'l	LL	_	2	8	μΑ

Capacitance

Parameter ^[9, 10]	Description	Test Conditions	Мах	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	10	pF
C _{OUT}	Output capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Notes

V_{IL(min.)} = -2.0 V for pulse durations less than 20 ns.
 V_{IL(max)} = V_{CC}+0.75 V for pulse duration less than 20 ns.
 Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.

8. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC = VCC(typ), TA = 25 °C 9. Tested initially and after any design or process changes that may affect these parameters. 10. The input capacitance on the CE₂ pin of the FBGA package and on the \overline{BHE} pin of the 44TSOPII package is 15 pF.

Thermal Resistance

Parameter ^[11]	Description	Test Conditions	FBGA	TSOP II	Unit
Θ_{JA}		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	39.3	35.62	°C / W
Θ _{JC}	Thermal resistance (Junction to case)		9.69	9.13	°C / W

AC Test Loads and Waveforms

Parameters	2.50 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min	Typ ^[12]	Мах	Unit
V _{DR}	V _{CC} for data retention			1.5	-	-	V
I _{CCDR}	Data retention current	$\begin{array}{l} \frac{V_{CC}}{CE} = 1.5 \text{ V} \\ \overline{CE}_1 \geq V_{CC} - 0.2 \text{ V} \text{ or } CE_2 \leq 0.2 \text{ V} \\ \overline{Or} (\overline{BHE} \text{ and } \overline{BLE}) \geq V_{CC} - 0.2 \text{ V}, \\ V_{IN} \geq V_{CC} - 0.2 \text{ V} \text{ or } V_{IN} \leq 0.2 \text{ V} \end{array}$	Ind'l	_	-	4	μΑ
t _{CDR} ^[11]	Chip deselect to data retention time			0	-	_	ns
t _R ^[13]	Operation recovery time			55	-	-	ns

Data Retention Waveform^[14]

Notes

11. Tested initially and after any design or process changes that may affect these parameters

12. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC = VCC(typ), TA = 25 °C

13. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} \geq 100 μ s or stable at V_{CC(min.)} \geq 100 μ s. 14. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics Over the Operating Range

Demonster (15)	Description	55	55 ns		
Parameter ^[15]	Description	Min	Мах	Unit	
Read Cycle			•		
t _{RC}	Read cycle time	55	-	ns	
t _{AA}	Address to data valid	-	55	ns	
t _{OHA}	Data hold from address change	10	-	ns	
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to data valid	-	55	ns	
t _{DOE}	OE LOW to data valid	-	25	ns	
t _{LZOE}	OE LOW to LOW Z ^[16]	5	_	ns	
t _{HZOE}	OE HIGH to High Z ^[16, 17]	_	20	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[16]	10	_	ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[16, 17]	_	20	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-up	0	-	ns	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to Power-down	_	55	ns	
t _{DBE}	BLE/BHE LOW to data valid	_	55	ns	
t _{LZBE}	BLE/BHE LOW to Low Z ^[16]	10	_	ns	
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[16, 17]	_	20	ns	
Write Cycle ^[18]			•		
t _{WC}	Write cycle time	55	_	ns	
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to write end	40	_	ns	
t _{AW}	Address set-up to write end	40	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address set-up to write start	0	_	ns	
t _{PWE}	WE pulse width	40	-	ns	
t _{BW}	BLE/BHE LOW to write end	40	-	ns	
t _{SD}	Data set-up to write end	25	-	ns	
t _{HD}	Data hold from write end	0	-	ns	
t _{HZWE}	WE LOW to High-Z ^[16, 17]	-	20	ns	
t _{LZWE}	WE HIGH to Low-Z ^[16]	10	-	ns	

Notes

 17. t_{HZOE}, t_{HZCE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
 18. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the output set-up and hold timing should be referenced to the edge of the signal that terminates the write.

^{15.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section. 16. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given advices.

device.

Switching Waveforms

Figure 2. Read Cycle 2 (OE Controlled)^[20, 21]

Notes

^{19.} The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, and $CE_2 = V_{IH}$. 20. WE is HIGH for read cycle. 21. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 3. Write Cycle 1 (WE Controlled)^[22, 23, 24]

Notes

- 22. The internal Write time of the memory is defined by the overlap of WE, $\overline{CE_1} = VIL$, \overline{BHE} and/or $\overline{BLE} = VIL$, and $CE_2 = VIH$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write
- 23. Data I/O is high-impedance if $\overline{OE} = V_{|H}$. 24. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with $\overline{WE} = V_{|H}$, the output remains in a high-impedance state. 25. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 5. Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[26]

Notes

26. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state 27. During this period, the I/Os are in output state and input signals should not be applied

Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data out (I/O ₀ –I/O ₁₅)	Read (upper byte and Lower byte)	Active (I _{CC})
L	Н	Н	L	Н	L	Data out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read (lower byte only)	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data out (I/O ₈ –I/O ₁₅)	Read (upper byte only)	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data in (I/O ₀ –I/O ₁₅)	Write (upper byte and Lower byte)	Active (I _{CC})
L	Н	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write (lower byte only)	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data in (I/O ₈ –I/O ₁₅)	Write (upper byte only)	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62157DV30LL-55BVI	51-85150	48-ball (6 x 8 x 1 mm) FBGA	Industrial
	CY62157DV30LL-55BVXI		48-ball (6 x 8 x 1 mm) FBGA (Pb-free)	
	CY62157DV30LL-55ZSXI	51-85087	44-pin TSOP II (Pb-free)	

Ordering Code Definition

Package Diagram

Figure 7. 48-Pin VFBGA (51-85150)

51-85150 *F

Acronyms

Acronym	Description	
CMOS	complementary metal oxide semiconductor	
I/O	input/output	
SRAM	static random access memory	
VFBGA	very fine ball grid array	
TSOP	thin small outline package	

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
μΑ	microamperes		
mA	milliampere		
MHz	megahertz		
ns	nanoseconds		
pF	picofarads		
V	volts		
Ω	ohms		
W	watts		

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	126316	05/22/03	HRT	New Data Sheet
*A	131013	11/19/03	CBD/LDZ	Change from Advance to Preliminary
*В	133115	01/24/04	CBD	Minor Change: Change MPN and upload.
*C	211601	See ECN	AJU	Change from Preliminary to Final Changed Marketing part number from CY62157DV to CY62157DV30 in the titl and in the Ordering Information table Added footnotes 4, 5 and 11 Modified footnote 8 to include ramp time and wait time Removed MAX value for VDR on Data Retention Characteristics table Changed ordering code for Pb-free parts Modified voltage limits in Maximum Ratings section
*D	236628	See ECN	SYT/AJU	Added 45-ns and 70-ns Speed Bins Added Automotive product information
*E	257349	See ECN	PCI	Added test condition for 45 ns part (footnote #13 on page 4)
*F	372074	See ECN	SYT	Added Pb-Free Automotive Part in the Ordering Information Removed 'Preliminary' tag from Automotive Information
*G	433838	See ECN	ZSD	Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Updated the thermal resistance table Updated the ordering information table and changed the package name column to package diagram
*H	488954	See ECN	VKN	Added Automotive-A product Updated ordering Information table
*	2897932	03/23/2010	VKN	Removed 45ns speed bin Removed Auto-A/Auto-E information Removed 48-Pin TSOP I information Updated ordering Information table Updated package diagrams.
*J	3068300	10/25/2010	RAME	Removed CY62157DV30LL-70BVXI part related info Updated I _{SB1} /I _{SB2} /I _{CCDR} test conditions to reflect byte power down feature Updated datasheet as per new template Added Acronyms and Units of Measure table Added Ordering Code Definition Updated Package Diagram to 51-85150 *F Converted all tablenotes into footnotes

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products				
Automotive	cypress.com/go/automotive	USB Controllers	cypress.com/go/USB	
Clocks & Buffers	cypress.com/go/clocks	Wireless/RF	cypress.com/go/wireless	
Interface	cypress.com/go/interface	PS	oC Solutions	
Lighting & Power Control	cypress.com/go/powerpsoc	psoc.cypress.com/solutions		
	cypress.com/go/plc		PSoC 3 PSoC 5	
Memory	cypress.com/go/memory			
Optical & Image Sensing	cypress.com/go/image			
PSoC	cypress.com/go/psoc			
Touch Sensing	cypress.com/go/touch			

© Cypress Semiconductor Corporation, 2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05392 Rev. *J

Revised October 25, 2010

Page 15 of 15

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.