

CY2304NZ

Four Output PCI-X and General Purpose Buffer

Features

- One input to four output buffer/driver
- General-purpose or PCI-X clock buffer
- Buffers all frequencies from DC to 140 MHz
- Output-to-output skew less than 100 ps
- Space-saving 8-pin TSSOP package
- 3.3 V operation
- 60 ps typical output-output skew

Functional Description

The CY2304NZ is a low-cost buffer designed to distribute high-speed clocks for PCI-X and other applications. The device operates at 3.3 V and outputs can run up to 140 MHz.

Table 1. Function Table

Inp	Outputs	
BUF_IN	OE	Output [1:4]
L	L	L
	L H	L
Ĥ	: H	ĿĦ

Block Diagram

Pin Configuration

Pin Description

For CY2304NZ

Signal	Pin	Description		
V _{DD}	6	3.3 V voltage supply		
GND	4	Ground		
BUF_IN	1	Input clock		
OUTPUT [1:4]	3, 5, 7, 8	Outputs		
OE	2	Input pin for output enable, active HIGH.		

Cypress Semiconductor Corporation Document Number: 38-07099 Rev. *F

٠

198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised April 8, 2013

Maximum Ratings

Supply Voltage to Ground Potential –0.5 V to V_{DD} + 0.5 V	
DC Input Voltage0.5 V to V_DD + 0.5 V	

Storage Temperature -65 °C to +150 °C Max. Soldering Temperature (10 sec.) 260 °C Junction Temperature 150 °C

Operating Conditions

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance	-	25	pF
C _{IN}	Input Capacitance	-	7	pF
BUF_IN, OUTPUT [1:4]	Operating Frequency	DC	140	MHz
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW Voltage [1]		-	0.8	V
V _{IH}	Input HIGH Voltage [1]		2.0	-	V
IIL	Input LOW Current	V _{IN} = 0 V	-5	5	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-5	5	μΑ
V _{OL}	Output LOW Voltage [2]	I _{OL} = 24 mA	-	0.8	V
		I _{OL} = 12 mA	-	0.55	V
V _{OH}	Output HIGH Voltage [2]	I _{OH} = –24 mA	2.0	-	V
		I _{OH} = –12 mA	2.4	-	V
I _{DD}	Supply Current	Unloaded outputs at 66.66 MHz	-	25	mA

Switching Characteristics

For Commercial and Industrial Temperature Devices

Parameter ^[3]	Name	Description	Min	Тур	Max	Unit
	Duty Cycle ^[2] = $t_2 \div t_1$	Measured at 1.5 V	40.0	50.0	60.0	%
t ₃	Rise Time ^[2]	Measured between 0.8 V and 2.0 V	-	-	1.50	ns
t ₄	Fall Time ^[2]	Measured between 0.8 V and 2.0 V	_	-	1.50	ns
t ₅	Output to Output Skew ^[2]	All outputs equally loaded	_	60	100	ps
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ^[2]	Measured at V _{DD} /2	2.5	3.5	5	ns

Notes

BUF_IN input has a threshold voltage of V_{DD}/2.
Parameter is guaranteed by design and characterization. It is not 100% tested in production.
All parameters specified with loaded outputs.

Switching Waveforms

Figure 1. Duty Cycle Timing

Figure 2. All Outputs Rise/Fall Time

Figure 4. Input-Output Propagation Delay

Ordering Information

Ordering Code	Package Type	Operating Range
Standard		
CY2304NZZI-1	8-pin TSSOP	Industrial, –40 °C to 85 °C
CY2304NZZI-1T	8-pin TSSOP – Tape and Reel	Industrial, –40 °C to 85 °C
Pb-free		
CY2304NZZXC-1	8-pin TSSOP	Commercial, 0 °C to 70 °C
CY2304NZZXC-1T	8-pin TSSOP – Tape and Reel	Commercial, 0 °C to 70 °C
CY2304NZZXI-1	8-pin TSSOP	Industrial, –40 °C to 85 °C
CY2304NZZXI-1T	8-pin TSSOP – Tape and Reel	Industrial, –40 °C to 85 °C

Ordering Code Definitions

Package Diagram

Figure 5. 8-pin TSSOP (4.40 mm Body) Z08.173/ZZ08.173 Package Outline, 51-85093

DIMENSIONS IN MMEINCHES] MIN. MAX.

REFERENCE JEDEC MO-153

	PART #
Z08.173	STANDARD PKG.
ZZ08.173	LEAD FREE PKG.

51-85093 *D

Acronyms

Acronym	Description	
PCI	Peripheral Component Interconnect	
TSSOP	Thin-Shrink Small Outline Package	

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
Hz	hertz
MHz	megahertz
μA	microampere
mA	milliampere
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
ps	picosecond
V	volt
W	watt

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	111420	02/12/02	IKA	New data sheet.
*A	118610	09/25/02	HWT	Updated Ordering Information: Added Industrial Temperature Range in the Ordering Information.
*В	121820	12/14/02	RBI	Updated Operating Conditions: Added t _{PU} parameter and its details.
*C	291098	See ECN	RGL	Updated Switching Characteristics: Specified typical value for "Output to Output Skew" parameter. Updated Ordering Information: Added Lead-free Devices.
*D	2904623	04/05/10	CXQ	Updated Ordering Information (Removed inactive parts). Updated Package Diagram.
*E	3163624	02/05/2011	СХQ	Updated Maximum Ratings (Removed reference to "Except REF" and "REF for DC Input Voltage spec). Added Ordering Code Definitions. Updated Package Diagram. Added Acronyms and Units of Measure. Updated in new template.
*F	3931498	04/08/2013	PURU	Updated Maximum Ratings: Removed "Static Discharge Voltage" and its related information. Updated Package Diagram: spec 51-85093 – Changed revision from *C to *D.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2002-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-07099 Rev. *F

Revised April 8, 2013

All products and company names mentioned in this document may be the trademarks of their respective holders.