Advance Information Data sheet acquired from Harris Semiconductor SCHS287B – Revised January 2004 # Octal Buffer/Line Drivers, 3-State CD54/74AC/ACT240 - Inverting CD54/74AC/ACT241 - Non-Inverting CD54/74AC/ACT244 - Non-Inverting ### **Type Features:** - Buffered inputs - Typical propagation delay: 3.6 ns @ Vcc = 5 V, T_A = 25° C, C_L = 50 pF # FUNCTIONAL DIAGRAM & TERMINAL ASSIGNMENT The RCA CD54/74AC240, CD54/74AC241, and CD54/74AC244 and the CD54/74ACT240, CD54/74ACT241, and CD54/74ACT244 3-state octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT240 and CD54/74AC/ACT244 have active-LOW output enables (10E, 20E). The CD54/74AC/ACT241 has one active-LOW (10E) and one active-HIGH (20E) output enable. The CD74AC240 and CD74ACT240 are supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M and M96 suffixes). The CD74AC241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and the CD74ACT241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M96 suffix). The CD74AC244 and CD74ACT244 are supplied in 20-lead dual-in-line plastic packages (E suffix), 20-lead small-outline packages (M and M96 suffixes), and 20-lead shrink small-outline packages (SM96 suffix). These package types are operable over the following temperature ranges: Commerical (0 to 70°C); Industrial (–40 to +85°C); and Extended Industrial/Military (–55 to + 125°C). The CD54AC240 and CD54AC244 and the CD54ACT240, CD54ACT241, and CD54ACT244 are supplied in 20-lead hermetic dual-in-line ceramic packages (F3A suffix) and are operable over the -55 to +125°C temperature range. ### **Family Features:** - Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015 - SCR-Latch-up-resistant CMOS process and circuit design - Speed of bipolar FAST*/AS/S with significantly reduced power consumption - Balanced propagation delays - AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply - ± 24-mA output drive current - Fanout to 15 FAST* ICs - Drives 50-ohm transmission lines ### TRUTH TABLES | | INPUTS | | | | |----------|------------|---|--|--| | 10E, 20E | 10E, 20E A | | | | | L | L | Н | | | | L | Н | L | | | | Н | X | Z | | | (AC/ACT240) | INPU | ITS | OUTPUT | |----------|-----|--------| | 10E, 20E | Α | Y | | L | , L | L | | L | Н | Н | | н | X | Z | (AC/ACT244) | INP | UTS | OUTPUT | PUT INPUTS | | OUTPUT | |-----|-----|--------|------------|----|--------| | 10E | 1A | 1Y | 20E | 2A | 2Y | | L | L | L | L | Х | Z | | L | н | H | н | L | L | | н | х | Z | Н | н | н | (AC/ACT241) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = HIGH Impedance This data sheet is applicable to the CD54/74AC240, CD54ACT240, and CD54/74ACT241. The CD54/74AC241 were not acquired from Harris Semiconductor. See SCHS244 for information on the CD74ACT240, CD74AC244, and CD74ACT244. Copyright © 2004, Texas Instruments Incorporated ^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp. | MAXIMUM RATINGS, Absolute-Maximum Values: | |--| | DC SUPPLY-VOLTAGE (V _{CC})0.5 to 6 V | | DC INPUT DIODE CURRENT, I_{iK} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$) | | DC OUTPUT DIODE CURRENT, l_{OK} (for $V_0 < -0.5$ V or $V_0 > V_{CC} + 0.5$ V) | | DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, Io (for Vo > -0.5 V or Vo < Vcc + 0.5 V) | | DC V _{∞} or GROUND CURRENT (I _{∞} or I _{GNO}) | | POWER DISSIPATION PER PACKAGE (PD): | | For T _A = -40 to +85°C (Package Type E) | | For T _A = -40 to +70°C (Package Type M) | | F T TO (0500 (D) T T) | | For T _A = +70 to +85°C (Package Type M) | | For I _A = +70 to +85°C (Package Type M) | | | | OPERATING-TEMPERATURE RANGE (T _A): CD54 55 to +125°C CD74 40 to +85°C | | OPERATING-TEMPERATURE RANGE (T _A): CD5455 to +125°C | | $\begin{array}{lll} \text{OPERATING-TEMPERATURE RANGE (T_{A}): CD54} &55 \text{ to } +125^{\circ}\text{C} \\ & \text{CD74} &40 \text{ to } +85^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (T_{\text{Stg}})} &65 \text{ to } +150^{\circ}\text{C} \\ \end{array}$ | | $\begin{array}{lll} \text{OPERATING-TEMPERATURE RANGE (T_A): CD54} &55 \text{ to } +125^{\circ}\text{C} \\ & \text{CD74} &40 \text{ to } +85^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (Tstg)} &65 \text{ to } +150^{\circ}\text{C} \\ \text{LEAD TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} $ | ### **RECOMMENDED OPERATING CONDITIONS:** For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERISTIC | | | LIMITS | | | |---|------|------|--------|------|--| | CHARACTERISTIC | MIN. | MAX. | UNITS | | | | Supply-Voltage Range, V _{CC} *: | | | | | | | (For T _A = Full Package-Temperature Range) | | | | | | | AC Types | 1.5 | 5.5 | V | | | | ACT Types | 4.5 | 5.5 | V | | | | DC Input or Output Voltage, V _I , V _O | | 0 | VCC | ٧ | | | Operating Temperature, T _A | CD54 | -55 | +125 | °C | | | | CD74 | -40 | +85 | C | | | Input Rise and Fall Slew Rate, dt/dv | | | | | | | at 1.5 V to 3 V (AC Types) | | 0 | 50 | ns/V | | | at 3.6 v to 5.5 V (AC Types) | | 0 | 20 | ns/V | | | at 4.5 V to 5.5 V (ACT Types) | | 0 | 10 | ns/V | | ^{*} Unless otherwise specified, all voltages are referenced to ground. CD54/74AC, ACT240 TYPES TERMINAL ASSIGNMENT CD54/74AC, ACT241 TYPES TERMINAL ASSIGNMENT CD54/74AC, ACT244 TYPES TERMINAL ASSIGNMENT STATIC ELECTRICAL CHARACTERISTICS: AC Series | | | | | | AMBIENT TEMPERATURE (T _A) - °C | | | | | | | | | | | | |----------------------------------|-----------------|--|------------------------|-----------------|--|----------|----------|-------|--------|----------|----------|---|------|---|-----|--| | CHARACTERISTI | CS | TEST CO | NDITIONS | V _{cc} | +: | 25 | 40 t | o +85 | -55 to | +125 | UNITS | | | | | | | | | V,
(V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | | | | | | High-Level Input | | | | 1.5 | 1.2 | | 1.2 | | 1.2 | | | | | | | | | Voltage | VIH | | | 3 | 2.1 | | 2.1 | | 2.1 | — | v | | | | | | | | | | | 5.5 | 3.85 | <u> </u> | 3.85 | | 3.85 | | | | | | | | | Low-Level Input | | | | 1.5 | _ | 0.3 | — | 0.3 | | 0.3 | | | | | | | | Voltage | VIL | | | 3 | | 0.9 | _ | 0.9 | | 0.9 | V | | | | | | | | | | | 5.5 | _ | 1.65 | _ | 1.65 | _ | 1.65 | <u> </u> | | | | | | | High-Level Output | , | | -0.05 | 1.5 | 1.4 | | 1.4 | _ | 1.4 | | | | | | | | | Voltage | V _{OH} | ViH | -0.05 | 3 | 2.9 | | 2.9 | _ | 2.9 | | | | | | | | | | | or | -0.05 | 4.5 | 4.4 | | 4.4 | _ | 4.4 | _ |] | | | | | | | | | V _{IL} | -4 | 3 | 2.58 | _ | 2.48 | | 2.4 | | V | | | | | | | | | | -24 | 4.5 | 3.94 | · · | 3.8 | _ | 3.7 | _ | | | | | | | | | | #, * { | -75 | 5.5 | - | | 3.85 | | _ | <u> </u> | | | | | | | | | | "' | -50 | 5.5 | | _ | _ | | 3.85 | |] | | | | | | | Low-Level Output | | | 0.05 | 1.5 | _ | 0.1 | _ | 0.1 | _ | 0.1 | | | | | | | | Voltage | VOL | V _{IH} | 0.05 | 3 | | 0.1 | _ | 0.1 | _ | 0.1 | | | | | | | | | | or | 0.05 | 4.5 | | 0.1 | | 0.1 | _ | 0.1 | | | | | | | | | | VIL | 12 | 3 | _ | 0.36 | _ | 0.44 | _ | 0.5 |] v | | | | | | | | | | | | | | | 24 | 4.5 | _ | 0.36 | _ | 0.44 | _ | 0.5 | | | | | #, * { | 75 | 5.5 | _ | | | 1.65 | _ | - | | | | | | | | | | "· ~ { | 50 | 5.5 | | | _ | _ | · · - | 1.65 | 1 | | | | | | | Input Leakage
Current | l _t | V _{CC}
or
GND | | 5.5 | _ | ±0.1 | <u>-</u> | ±1 | _ | ±1 | μΑ | | | | | | | 3-State Leakage
Current | loz | V _{IH} | | | | | | | | | | | | | | | | | | V _{IL} V _O = V _{CC} | | 5.5 | | ±0.5 | - | ±5 | | ±10 | μΑ | | | | | | | | | or
GND | | | | | | | | | | | | | | | | Quiescent Supply
Current, MSI | loc | V _∞
or
GND | 0 | 5.5 | _ | 8 | | 80 | - | 160 | μΑ | | | | | | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. ^{*}Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. ### STATIC ELECTRICAL CHARACTERISTICS: ACT Series | | | . , | | AMBIENT TEMPERATURE (TA) - °C | | | | | | | | |---|-----------------|--|------------------------|-------------------------------|------|------|----------|-------|--------|------|----------| | CHARACTERISTI | cs | TEST CO | NDITIONS | V _{cc} | + | 25 | -40 t | o +85 | -55 to | +125 | UNITS | | | | V,
(V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | High-Level Input
Voltage | V _{IH} | | | 4.5
to
5.5 | 2 | _ | 2 | | 2 | _ | V | | Low-Level Input
Voltage | VıL | | | 4.5
to
5.5 | _ | 0.8 | | 0.8 | | 0.8 | V | | High-Level Output | | V _{IH}
or | -0.05 | 4.5 | 4.4 | | 4.4 | - | 4.4 | | | | Voltage | V _{OH} | V _{IL} | -24 | 4.5 | 3.94 | | 3.8 | _ | 3.7 | | V | | | | #, * { | -75 | 5.5 | | | 3.85 | | | | | | | | | -50 | 5.5 | | | | _ | 3.85 | | <u> </u> | | Low-Level Output | | ViH | 0.05 | 4.5 | | 0.1 | | 0.1 | | 0.1 | | | Voltage | V_{OL} | or
V _{IL}
#, * { | 24 | 4.5 | | 0.36 | | 0.44 | | 0.5 | v | | _ | | | 75 | 5.5 | | | | 1.65 | | | | | | | , l | 50 | 5.5 | | | | | | 1.65 | | | Input Leakage
Current | t _i | V _{CC}
or
GND | | 5.5 | | ±0.1 | <u> </u> | ±1 | _ | ±1 | μА | | 3-State Leakage
Current | loz | V _{IH}
or
V _{IL}
V _O = | | 5.5 | _ | ±0.5 | | ±5 | | ±10 | μΑ | | | · | V _{cc}
or
GND | | | | | | | | | | | Quiescent Supply
Current, MSI | lcc | V _∞
or
GND | 0 | 5.5 | | 8 | | 80 | _ | 160 | μΑ | | Additional Quiescent S
Current per Input Pir
TTL Inputs High
1 Unit Load | | V _{cc} -2.1 | · | 4.5
to
5.5 | _ | 2.4 | | 2.8 | _ | 3 | mA | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. ### **ACT INPUT LOADING TABLES** | CD54/74ACT240 | | | | | | |-------------------|------|--|--|--|--| | INPUT UNIT LOADS* | | | | | | | nA0 - A3 | 1.42 | | | | | | 10E | 0.83 | | | | | | 20E | 0.83 | | | | | | CD54/74ACT241 | | | | | | | |------------------|------|--|--|--|--|--| | INPUT UNIT LOADS | | | | | | | | nA0 - A3 | 0.5 | | | | | | | 10E | 0.83 | | | | | | | 20E | 1.67 | | | | | | | CD54/74ACT244 | | | | | | | | |---------------|-------------------|--|--|--|--|--|--| | INPUT | INPUT UNIT LOADS* | | | | | | | | nA0 - A3 | 0.5 | | | | | | | | 10E | 0.83 | | | | | | | | 20E | 0.83 | | | | | | | ^{*}Unit load is ∆I_∞ limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C. SWITCHING CHARACTERISTICS: AC Series; $t_{\rm r}$ $t_{\rm r}$ = 3 ns, $C_{\rm L}$ = 50 pF | | | | AMBII | T . | | | | |---|--------------------------------------|--------------------|------------------------------------|---------------------|-----------------|--------------------|-------| | CHARACTERISTICS | SYMBOL | V _{cc} | | o +85 | -55 to +125 | | UNITS | | | ' | (V) | MIN. | MAX. | MIN. | MAX. |] | | Propagation Delays:
Data to Outputs
AC240 | t _{PLH} | 1.5
:3.3*
5† | 2.6
1.9 | 82
9.2
6.5 |
2.5
1.8 | 90
10.1
7.2 | ns | | AC241, 244 | : tегн
tенс | 1.5
3.3
5 | | 93
10.5
7.5 | _
2.9
2.1 | 103
11.5
8.2 | ns | | Output Enable Times | t _{PZL} | 1.5
3.3
5 |
4.6
3.1 | 136
16.4
10.9 | _
4.5
3 | 150
18
12 | ns | | Output Disable Times | t _{PLZ}
t _{PHZ} | 1.5
3.3
5 | 3.9
3.1 | 136
13.6
10.9 |
3.8
3 | 150
15
12 | ns | | Power Dissipation Capacitance
AC240
AC241, 244 | C _{PD} § | | 65 Typ. 65 Typ.
71 Typ. 71 Typ. | | pF | | | | Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | 4 Typ. @ 25°C | | | V | | | Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Тур. @ 25°С | | | V | | | Input Capacitance | Cı | _ | | 10 | _ | 10 | pF | | 3-State Output Capacitance | Co | | | 15 | | 15 | pF | ### SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF | | | | AMBI | (A) - °C | | | | | |---|--------------------------------------|------------------------|---------------------------------|------------|------|------|-------|--| | CHARACTERISTICS | SYMBOL | V _{cc}
(V) | -40 | -40 to +85 | | +125 | UNITS | | | | } | | MIN. | MAX. | MIN. | MAX. | | | | Propagation Delays:
Data to Outputs
ACT240 | t _{PLH}
t _{PHL} | 5† | 2.3 | 7.8 | 2.2 | 8.6 | ns | | | ACT241, 244 | t _{PLH}
t _{PHL} | 5 | 2.5 | 8.7 | 2.4 | 9.6 | ns | | | Output Enable Times | t _{PZL} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | Output Disable Times | t _{PLZ} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | Power Dissipation Capacitance
ACT240
ACT241, 244 | C _{PO} § | | 65 Typ. 65 Typ. 71 Typ. 71 Typ. | | | pF | | | | Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | 4 Typ. @ 25°C | | V | | | | | Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Typ. @ 25°C | | v | | | | | Input Capacitance | Cı | | _ | 10 | _ | 10 | pF | | | 3-State Output Capacitance | Co | | _ | 15 | _ | 15 | ρF | | ^{*3.3} V: min. is @ 3.6 V max. is @ 3 V $\ddagger C_{PD}$ is used to determine the dynamic power consumption, per package. For AC series: $P_D = V_{CC}^2 \, f_i \, (C_{PD} + C_L)$ For ACT series: $P_D = V_{CC}^2 \, f_i \, (C_{PD} + C_L) + V_{CC} \, \Delta I_{CC}$ where f_i = input frequency †5 V: min. is @ 5.5 V max. is @ 4.5 V C_L = output load capacitance $V_{CC} = supply voltage$ ### PARAMETER MEASUREMENT INFORMATION #### NOTES: - VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: - PRR ≤ 1 MHz, t₁ = 3 ns, t₁ = 3 ns, 5 KEW 1 ns. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 F CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH. 9205-42406 Fig. 1 - Simultaneous switching transient waveforms. 9205-42407 Fig. 3 - Propagation delay times and test circuit. | | CD54/74AC | CD54/74ACT | |------------------------------|---------------------|---------------------| | Input Level | V _{cc} | 3 V | | Input Switching Voltage, Vs | 0.5 V _{cc} | 1.5 V | | Output Switching Voltage, Vs | 0.5 V _{cc} | 0.5 V _{CC} | 24-Aug-2014 ### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|-------------------------------|--------------|-------------------------|---------| | CD54AC240F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54AC240F3A | Sample | | CD54AC244F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54AC244F3A | Sample | | CD54ACT240F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54ACT240F3A | Samples | | CD54ACT241F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54ACT241F3A | Samples | | CD54ACT244F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54ACT244F3A | Samples | | CD74AC240E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74AC240E | Samples | | CD74AC240EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74AC240E | Samples | | CD74AC240M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC240M | Samples | | CD74AC240M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC240M | Samples | | CD74AC244E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74AC244E | Samples | | CD74AC244EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type -55 to 125 | | CD74AC244E | Samples | | CD74AC244M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC244M | Samples | | CD74AC244M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC244M | Samples | | CD74AC244M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC244M | Samples | | CD74ACT240E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT240E | Samples | | CD74ACT240EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT240E | Samples | | CD74ACT240M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT240M | Samples | | CD74ACT240M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT240M | Samples | www.ti.com ### PACKAGE OPTION ADDENDUM 24-Aug-2014 | Orderable Device | Status | Package Type | _ | Pins | _ | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CD74ACT240M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT240M | Samples | | CD74ACT241E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT241E | Samples | | CD74ACT241M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT241M | Samples | | CD74ACT244E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT244E | Samples | | CD74ACT244M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT244M | Samples | | CD74ACT244M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT244M | Samples | | CD74ACT244M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT244M | Samples | | CD74ACT244M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT244M | Samples | | CD74ACT244MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT244M | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ⁽³⁾ MSL. Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ### PACKAGE OPTION ADDENDUM 24-Aug-2014 - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF CD54AC240, CD54AC244, CD54ACT240, CD54ACT241, CD54ACT244, CD74AC240, CD74AC244, CD74ACT240, CD74ACT241, CD74ACT244: - Catalog: CD74AC240, CD74AC244, CD74ACT240, CD74ACT241, CD74ACT244 - Military: CD54AC240, CD54AC244, CD54ACT240, CD54ACT241, CD54ACT244 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications ### PACKAGE MATERIALS INFORMATION www.ti.com 18-Aug-2014 ### TAPE AND REEL INFORMATION | A0 | | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE ### *All dimensions are nominal | Device | _ | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74AC240M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74AC244M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT240M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT241M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT244M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | www.ti.com 18-Aug-2014 *All dimensions are nominal | 7 til diffictiolofio die floriffiai | | | | | | | | |-------------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | CD74AC240M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74AC244M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT240M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT241M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT244M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | ### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ## N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. SOIC ### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. - 5. Reference JEDEC registration MS-013. SOIC NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOIC NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. ### Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity