
Rev. 1.3 12/03 Copyright © 2003 by Silicon Laboratories AN131

AN131

PORTING CONSIDERATIONS FROM ‘F02X TO ‘F12X

Relevant Devices
This application note applies to the following devices:

C8051F020, C8051F021, C8051F022, C8051F023,
C8051F120, C8051F121, C8051F122, C8051F123,
C8051F124, C8051F125, C8051F126, and
C8051F127.

Introduction
The C8051F12x family has 128K of FLASH,
8.25K of RAM, and is capable of operating at
speeds up to 100MHz. This family is pin compati-
ble with the C8051F02x series, but due to added
flexibility and functionality, is not code compati-
ble.

This application note discusses differences between
the C8051F12x series and the C8051F02x series.
The main topics include clocking, SFR paging,
code banking, and caching. Example initialization
routines for the C8051F12x series and a checklist
to use when porting a project from a C8051F02x to
a C8051F12x device are included at the end of this
note.

Key Points
• The C8051F12x series is pin compatible with

the C8051F02x series but is not code compati-
ble.

• Most of the new features in the C8051F12x
series, such as the instruction cache and code
banking registers, may be left at their default
settings.

• The ‘F12x devices implement ‘SFR Paging’.
To correctly read or write to an SFR register,
the SFRPAGE register must be set to the
correct SFR page.

Clocking
The main differences in clocking between the
C8051F02x series and the C8051F12x series
include an on-chip calibrated 24.5 MHz internal
oscillator and a phase-locked loop (PLL). When
porting code, be aware that the OSCICN register
definition has changed and a new register, CLK-
SEL, has been added to accommodate the increased
clocking flexibility.

The 24.5 MHz Internal Oscillator
The C8051F12x series has a calibrated
24.5 MHz (+/- 2%) internal oscillator, instead of
the 16 MHz (+/- 20%) internal oscillator on the
C8051F02x. On reset, the system starts operating at
a frequency of approximately 3 MHz instead of
2 MHz.

Using the PLL to achieve
operating frequencies up to
100 MHz
Operating ‘F12x devices at frequencies greater
than 30 MHz is accomplished by using the PLL to
multiply a lower frequency oscillator source.

The input frequency range for the PLL is 5 to
30 MHz and can be derived from the internal or
external oscillator. Given a stable input signal, the
PLL output can have a wide range of frequencies
based on the values of PLL0MUL and PLL0DIV.
Keep in mind that the input clock signal is divided
by PLL0DIV before it is fed to the phase detector.
The phase detector input must be between 5 and
30 MHz. The maximum output frequency of the
PLL is limited by the maximum operating fre-
quency of the device.

AN131

2 Rev. 1.3

Example code showing how to initialize the PLL is
included at the end of this note. Please refer to the
Oscillators section of the C8051F12x datasheet for
step-by-step instructions for initializing the PLL.

SFR Paging
The C8051F12x series implements a ‘paged’ SFR
scheme which greatly expands the number of avail-
able SFR addresses. This SFR address expansion
provides support for more peripherals and gives the
programmer added flexibility. For example, Port 4
through Port 7 now occupy bit-addressable SFR
locations.

Reading and Writing to SFR
Registers
To correctly read or write to an SFR, the SFRPAGE
register must be set to the correct SFR page. The
SFRPAGE register is accessible from all SFR
pages. When changing SFR pages, it is recom-
mended to use the named constants in Figure 1
instead of assigning the actual SFR page number.
These are defined in the supplied ‘C8051F120.h’
and ‘C8051F120.inc’ files. This enhances code
readability and reduces the porting effort to future
platforms.

SFR Paging and Interrupts
By default, SFR page switching is handled auto-
matically by hardware when an interrupt occurs.
Upon entry into an interrupt service routine (ISR),
the SFRPAGE register will automatically switch to
the SFR page containing the flag bit that caused the
interrupt. Upon exit of the ISR, the SFR page is
automatically restored to the SFR page in use prior
to the interrupt.

For more information on SFR paging, please see
the CIP-51 section of the C8051F12x datasheet.

Figure 1. SFR Page Names

SFR Page Names
SFR Page
Number

LEGACY_PAGE
TIMER01_PAGE
UART0_PAGE
SPI0_PAGE
EMI0_PAGE
ADC0_PAGE
SMB0_PAGE
TMR2_PAGE
DAC0_PAGE
PCA0_PAGE

0x00

CPT0_PAGE
UART1_PAGE
TMR3_PAGE
DAC1_PAGE

0x01

CPT1_PAGE
ADC2_PAGE
TMR4_PAGE

0x02

CONFIG_PAGE
PLL0_PAGE

0x0F

Figure 1. SFR Page Names

SFR Page Names
SFR Page
Number

AN131

Rev. 1.3 3

Code Banking
The C8051F12x series supports code banking for
projects requiring greater than 64KB of FLASH.
All code bank switching is handled by writing to
the PSBANK register. Projects smaller than 64KB
can leave the PSBANK register at its default set-
ting which provides a 64KB linear address space.

When code banking is used, the common area
(FLASH addresses between 0x0000 to 0x7FFF) is
always available regardless of the PSBANK regis-
ter. The address space from 0x8000 to 0xFFFF can
be mapped to one of 4 physical 32KB banks of
FLASH, depending on the value of PSBANK.
Please see the FLASH and CIP-51 sections of the
C8051F12x datasheet for more detailed informa-
tion on the code banking architecture.

For larger projects, the user has the option of manu-
ally handling the bank switching in software or set-
ting up a code banked project and allowing the
linker to manage the bank switching. The advan-
tages and disadvantages of both methods are dis-
cussed below.

User-Managed Bank Switching
for Data Intensive Projects
User-managed bank switching is useful for projects
that have less than 64KB of executable code but
need to store large amounts of data in FLASH. In
this situation, the common area and Bank 1 are
used for program memory while Bank 2 and
Bank 3 are used for data storage. The project does
not need to be set up for code banking.

Bank selection for constant data (accessed via
MOVC and MOVX instructions) is handled inde-
pendently of bank selection for instruction fetches
(normal code execution). The IFBANK bits, which
control the instruction fetch operations, should be
left at their reset values, targeting Bank 1. The
COBANK bits, which control constant operations,
should be set to select the desired bank before read-
ing, writing, or erasing FLASH. If an interrupt

changes the COBANK bits, it should restore them
prior to ISR exit. The PSBANK register is not
restored by hardware and should be managed by
software.

Project-Managed Bank
Switching
Allowing the linker to manage code banking is a
must for projects that have more than 64KB of exe-
cutable program code. It allows functions in one
bank to call functions located in another bank with-
out the programmer having to worry about bank
switching. There is a restriction, however. Constant
code variables and tables must be located in the
common area or in the bank containing the function
which accesses them. For more information on this
topic and for step-by-step instructions on how to
set up a code-banked project, please refer to
AN130 on the Silicon Labs website.

Caching
The ‘F12x family of devices possess a branch tar-
get buffer and a pre-fetch engine which provide
optimal performance for a broad range of circum-
stances. In most applications, the cache control reg-
isters should be left in their reset states. Please refer
to the C8051F12x datasheet for more information
on the cache controller.

Interrupt Vector Table
The interrupt vector table in the ‘F12x is different
from the ‘F02x interrupt vector table. External
Interrupt 6, External Interrupt 7, and the External
Crystal OSC Ready interrupts have been removed.
The ADC2 Window Comparator interrupt has been
added as interrupt 17 (0x008B) and the ADC1 End
of Conversion interrupt has been renamed to ADC2
End of Conversion and moved to interrupt 18

http://www.cygnal.com

AN131

4 Rev. 1.3

(0x0093). The interrupt vector changes are outlined
in the tables below.

Device Comparison and
Porting Checklist
When porting a project from a C8051F02x device
to a C8051F12x device, some code modifications
are required and others are made to fully utilize the
enhanced flexibility and performance of the

C8051F12x devices. Both types of modifications
are discussed below, sorted by peripheral.

Analog-to-Digital Converter
(ADC)
Both the 12-bit and 10-bit versions of ADC0 are
identical to ADC0 on the ‘F02x devices. ADC1 (8-
bit 500 ksps) has been renamed to ADC2 on the
‘F12x. ADC2 now supports differential mode in
addition to single-ended mode and has its own Pro-
grammable Window Comparator. Also, the
CNVSTR signal has been renamed to CNVSTR0.
Please refer to the C8051F12x datasheet for ADC2
configuration information. Note that SFRPAGE
should be set to ADC0_PAGE or ADC2_PAGE
when reading or writing the corresponding ADC
registers.

Digital-to-Analog Converter
(DAC)
Both DAC0 and DAC1 on the ‘F12x are identical
to DAC0 and DAC1 on the ‘F02x. However, be
sure to set the SFRPAGE to DAC0_PAGE or
DAC1_PAGE before reading or writing to any
DAC registers.

Voltage Reference (VREF)
VREF1 on the ‘F02x has been renamed to VREF2
on the ‘F12x. Pin locations are unchanged. Note
that SFRPAGE should be set to LEGACY_PAGE
before any reads or writes to REF0CN.

Comparators
The comparators on the ‘F12x have been enhanced
over the equivalent ‘F02x comparators with a new
speed/power selection capability. As a result, two
new registers, CPT0MD and CPT1MD, have been
added to accommodate this new feature. These reg-
isters give the user the option of putting
comparator 0 and comparator 1 in a low power
mode. The reset value for these registers leaves the
speed and power consumption of ‘F12x compara-

Figure 2. Interrupts Added to the
‘F12x

Interrupt
Source

Interrupt
Vector

Priority

ADC2 Window
Comparator

0x008B 17

Figure 3. Interrupts No Longer
Present in the ‘F12x

Interrupt
Source

Interrupt
Vector

Priority

External
Interrupt 6

0x0093 18

External
Interrupt 7

0x009B 19

External
Crystal OSC

Ready

0x00AB 21

Figure 4. Interrupts That Have
Changed Locations in the ‘F12x

Interrupt
Source

Interrupt
Vector

Priority

ADC1 End of
Conversion

is now
ADC2 End of
Conversion

0x008B

0x0093

17

18

AN131

Rev. 1.3 5

tors equivalent to the speed and power consump-
tion of the ‘F02x comparators. Note that SFRPAGE
should be set to CPT0_PAGE or CPT1_PAGE
when reading or writing comparator registers.

Reset Sources
Forcing a power-on reset via software in the ‘F12x
is accomplished by writing a ‘1’ to PINRSF (bit 0
in the RSTSRC register) instead of PORSF (bit 1 in
the RSTSRC register) as in the ‘F02x. PORSF in
the ‘F12x has been changed from read/write to read
only.

The instruction prefetch engine must be enabled in
order to disable the watchdog timer. The instruction
prefetch engine is enabled by default upon reset.

Note that SFRPAGE should be set to LEGA-
CY_PAGE before any reads or writes to RSTSRC.

Oscillators
Please see the “Clocking” section of this docu-
ment.

FLASH Memory
Please see the “Code Banking” section of this doc-
ument.

External Memory Interface
(EMIF)
The external memory interface on the ‘F12x is
identical to the one on the ‘F02x. However,
because the ‘F12x devices can operate significantly
faster than the ‘F02x devices, be sure to check the
timing requirements for devices on the bus. Note
that SFRPAGE should be set to LEGACY_PAGE
before any reads or writes to EMIF registers.

Port Input/Output
Port 4 through Port 7 now occupy bit addressable
SFR locations on the ‘F12x. Separate PnMDOUT
registers have been added for each port and the

P74OUT register has been removed. Note that
SFRPAGE should be set to CONFIG_PAGE when
reading or writing to Port 4 through Port 7 and the
port input and output mode (PnMDIN and PnMD-
OUT) registers.

The CEX5 and CNVSTR2 signals have been added
as Crossbar inputs. The CNVSTR signal has been
renamed to CNVSTR0. If the application does not
use any of the newly added or renamed signals,
then the Crossbar configuration code will not need
modification. Note that SFRPAGE should be set to
CONFIG_PAGE before reading or writing to cross-
bar registers.

System Management Bus/I2C
Bus (SMBUS0)
The formula for calculating SMB0CR has changed
on the ‘F12x. Please refer to the System Manage-
ment Bus section of the C8051F12x datasheet for
more information about SMBUS0. Note that
SFRPAGE should be set to SMB0_PAGE before
any reads or writes to SMBUS0 registers.

Enhanced Serial Peripheral
Interface (SPI0)
The ‘F12x series features an enhanced Serial
Peripheral Interface. The enhanced SPI0 supports
double buffered transmits and multi-byte transac-
tions when in slave mode. Also, it can now operate
in 3-wire or 4-wire mode making the NSS signal
optional. The SPI0 configuration registers have
changed on the ‘F12x. For more information on the
enhanced SPI0, please refer to the C8051F12x
datasheet. Note that SFRPAGE should be set to
SPI0_PAGE before any reads or writes to SPI0 reg-
isters.

UART
For UART0 on the ‘F12x, timer selection for baud
rate generation has been moved to the newly added
SSTA0 register. UART0 now supports using

AN131

6 Rev. 1.3

Timer 1, Timer 2, Timer 3, or Timer 4 as its baud
rate source.

UART1 no longer requires an external crystal for
baud rate generation when used with the calibrated
24.5 MHz internal oscillator. Due to these changes,
the baud rate calculation equations have changed.
UART1 supports using Timer 1 as its baud rate
source. Hardware address decoding, synchronous
mode, and fixed baud rate mode are not supported
by UART1.

Note that SFRPAGE should be set to
UART0_PAGE or UART1 PAGE before accessing
any UART registers. Be aware that the timer regis-
ters may not appear on the same page as the UART
registers. SFRPAGE should also be set to the
proper UART page prior to calls to ‘printf’ or to
other input/output stream functions to direct the
operations to UART0 or UART1.

Timers
For Timer 0 and Timer 1, an additional prescaler
has been added which allows them to be clocked
from SYSCLK, SYSCLK divided by 4, SYSCLK
divided by 12, or SYSCLK divided by 48. Timer 0
and Timer 1 SFRs are located on the “TIM-
ER01_PAGE” SFR page.

Timer 2, Timer 3, and Timer 4 on the ‘F12x are
enhanced forms of the equivalent ‘F02x timers.
These new timers support output toggle mode, and
down count capability. For more information on
these timers, please refer to the C8051F12x data-
sheet. Note that SFRPAGE should be set to
TMR2_PAGE, TMR3_PAGE, or TMR4_PAGE
before any reads or writes to Timer 2, 3, or 4 regis-
ters, respectively.

Programmable Counter Array
(PCA)
In the ‘F12x, an additional capture/compare mod-
ule was added for a total of 6 capture/compare
modules. Note that SFRPAGE should be set to

PCA0_PAGE before any reads or writes to PCA0
registers.

JTAG
The JTAG device ID has changed for the ‘F12x
series. See the JTAG section of the ‘F12x datasheet
for details on the JTAG interface.

AN131

Rev. 1.3 7

Software Examples

Example 1
//---
// F12x_INIT_1.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 19 SEP 02
//
// This file contains example initialization routines for the C8051F12x series
// of devices.
//
// This program uses the the 24.5 MHz internal oscillator multiplied by two
// for an effective SYSCLK of 49 MHz. This program also initializes and uses
// UART1 at <BAUDRATE> bits per second.
//
//
// Target: C8051F12x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---
#include <c8051f120.h> // SFR declarations
#include <stdio.h> // printf() and getchar()

//---
// 16-bit SFR Definitions for 'F12x
//---

sfr16 DP = 0x82; // data pointer
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 RCAP3 = 0xca; // Timer3 capture/reload
sfr16 RCAP4 = 0xca; // Timer4 capture/reload
sfr16 TMR2 = 0xcc; // Timer2
sfr16 TMR3 = 0xcc; // Timer3
sfr16 TMR4 = 0xcc; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd2; // DAC1 data
sfr16 PCA0CP5 = 0xe1; // PCA0 Module 5 capture
sfr16 PCA0CP2 = 0xe9; // PCA0 Module 2 capture
sfr16 PCA0CP3 = 0xeb; // PCA0 Module 3 capture
sfr16 PCA0CP4 = 0xed; // PCA0 Module 4 capture
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 capture
sfr16 PCA0CP1 = 0xfd; // PCA0 Module 1 capture

AN131

8 Rev. 1.3

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define INTCLK 24500000 // Internal oscillator frequency in Hz
#define SYSCLK 49000000 // Output of PLL derived from (INTCLK*2)
#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P1^6; // LED='1' means ON
sbit SW2 = P3^7; // SW2='0' means switch pressed

//---
// Function PROTOTYPES
//---
void main(void);
void SYSCLK_Init(void);
void PORT_Init(void);
void UART1_Init (void);

//---
// MAIN Routine
//---

void main (void)
{

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART1_Init (); // initialize UART1

 SFRPAGE = UART1_PAGE; // Direct printf output to UART1
 printf("Hello\n"); // Print a string

 while(1);

}

//---
// Initialization Routines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal oscillator

AN131

Rev. 1.3 9

// at 24.5 MHz multiplied by two using the PLL.
//
void SYSCLK_Init (void)
{
 int i; // software timer

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 OSCICN = 0x83; // set internal oscillator to run
 // at its maximum frequency

 CLKSEL = 0x00; // Select the internal osc. as
 // the SYSCLK source

 //Turn on the PLL and increase the system clock by a factor of M/N = 2
 SFRPAGE = CONFIG_PAGE;

 PLL0CN = 0x00; // Set internal osc. as PLL source
 SFRPAGE = LEGACY_PAGE;
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = CONFIG_PAGE;
 PLL0CN |= 0x01; // Enable Power to PLL
 PLL0DIV = 0x01; // Set Pre-divide value to N (N = 1)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x02; // Multiply SYSCLK by M (M = 2)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PORT_Init
//---
//
// This routine configures the crossbar and GPIO ports.
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 XBR0 = 0x00;
 XBR1 = 0x00;

AN131

10 Rev. 1.3

 XBR2 = 0x44; // Enable crossbar and weak pull-up
 // Enable UART1

 P0MDOUT |= 0x01; // Set TX1 pin to push-pull
 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// UART1_Init
//---
//
// Configure the UART1 using Timer1, for <baudrate> and 8-N-1.
//
void UART1_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART1_PAGE;
 SCON1 = 0x10; // SCON1: mode 0, 8-bit UART, enable RX

 SFRPAGE = TIMER01_PAGE;
 TMOD &= ~0xF0;
 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

 TL1 = TH1; // initialize Timer1
 TR1 = 1; // start Timer1

 SFRPAGE = UART1_PAGE;
 TI1 = 1; // Indicate TX1 ready

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

AN131

Rev. 1.3 11

Example 2
//---
// F12x_INIT_2.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 19 SEP 02
//
// This file contains example initialization routines for the C8051F12x series
// of devices.
//
// This program uses a 22.1184 Mhz crystal oscillator multiplied by (9/4)
// for an effective SYSCLK of 49.7664 Mhz. This program also initializes and
// uses UART0 at <BAUDRATE> bits per second.
//
//
// Target: C8051F12x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---
#include <c8051f120.h> // SFR declarations
#include <stdio.h> // printf() and getchar()

//---
// 16-bit SFR Definitions for 'F12x
//---

sfr16 DP = 0x82; // data pointer
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 RCAP3 = 0xca; // Timer3 capture/reload
sfr16 RCAP4 = 0xca; // Timer4 capture/reload
sfr16 TMR2 = 0xcc; // Timer2
sfr16 TMR3 = 0xcc; // Timer3
sfr16 TMR4 = 0xcc; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd2; // DAC1 data
sfr16 PCA0CP5 = 0xe1; // PCA0 Module 5 capture
sfr16 PCA0CP2 = 0xe9; // PCA0 Module 2 capture
sfr16 PCA0CP3 = 0xeb; // PCA0 Module 3 capture
sfr16 PCA0CP4 = 0xed; // PCA0 Module 4 capture
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 capture
sfr16 PCA0CP1 = 0xfd; // PCA0 Module 1 capture

//---
// Global CONSTANTS

AN131

12 Rev. 1.3

//---
#define TRUE 1
#define FALSE 0

#define EXTCLK 22118400 // External oscillator frequency in Hz
#define SYSCLK 49760000 // Output of PLL derived from
 // (EXTCLK*9/4)

#define BAUDRATE 115200 // Baud rate of UART in bps
 // Note: The minimum standard baud rate
 // supported by the UART0_Init routine
 // in this file is 19,200 bps when
 // SYSCLK = 49.76MHz.

sbit LED = P1^6; // LED='1' means ON
sbit SW2 = P3^7; // SW2='0' means switch pressed

//---
// Function PROTOTYPES
//---
void main(void);
void SYSCLK_Init(void);
void PORT_Init(void);
void UART0_Init (void);

//---
// MAIN Routine
//---

void main (void)
{

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0

 SFRPAGE = UART0_PAGE; // Direct printf output to UART0
 printf("Hello\n"); // Print a string

 while(1);

}

//---
// Initialization Routines
//---

//---
// SYSCLK_Init

AN131

Rev. 1.3 13

//---
//
// This routine initializes the system clock to use an external 22.1184 MHz
// crystal oscillator multiplied by a factor of 9/4 using the PLL as its
// clock source. The resulting frequency is 22.1184 MHz * 9/4 = 49.7664 MHz
//
void SYSCLK_Init (void)
{
 int i; // delay counter

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 OSCXCN = 0x67; // start external oscillator with
 // 22.1184MHz crystal

 for (i=0; i < 256; i++) ; // Wait for osc. to start up

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 CLKSEL = 0x01; // Select the external osc. as
 // the SYSCLK source

 OSCICN = 0x00; // Disable the internal osc.

 //Turn on the PLL and increase the system clock by a factor of M/N = 9/4
 SFRPAGE = CONFIG_PAGE;

 PLL0CN = 0x04; // Set PLL source as external osc.
 SFRPAGE = LEGACY_PAGE;
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = CONFIG_PAGE;
 PLL0CN |= 0x01; // Enable Power to PLL
 PLL0DIV = 0x04; // Set Pre-divide value to N (N = 4)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x09; // Multiply SYSCLK by M (M = 9)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PORT_Init
//---
//

AN131

14 Rev. 1.3

// This routine configures the crossbar and GPIO ports.
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 XBR0 = 0x04; // Enable UART0
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-up

 P0MDOUT |= 0x01; // Set TX0 pin to push-pull
 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <baudrate> and 8-N-1. In order to
// increase the clocking flexibility of Timer0, Timer1 is configured to count
// SYSCLKs.
//
// To use this routine SYSCLK/BAUDRATE/16 must be less than 256. For example,
// if SYSCLK = 50 MHz, the lowest standard baud rate supported by this
// routine is 19,200 bps.
//
void UART0_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART0_PAGE;

 SCON0 = 0x50; // SCON0: mode 0, 8-bit UART, enable RX
 SSTA0 = 0x10; // Timer 1 generates UART0 baud rate and
 // UART0 baud rate divide by two disabled
 SFRPAGE = TIMER01_PAGE;
 TMOD &= ~0xF0;
 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 TH1 = -(SYSCLK/BAUDRATE/16); // Set the Timer1 reload value
 // When using a low baud rate, this equation
 // should be checked to ensure that the
 // reload value will fit in 8-bits.

 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx

 TL1 = TH1; // initialize Timer1
 TR1 = 1; // start Timer1

AN131

Rev. 1.3 15

 SFRPAGE = UART0_PAGE;
 TI0 = 1; // Indicate TX0 ready

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	Relevant Devices
	Introduction
	Key Points
	Clocking
	The 24.5 MHz Internal Oscillator
	Using the PLL to achieve operating frequencies up to 100 MHz

	SFR Paging
	Reading and Writing to SFR Registers
	SFR Paging and Interrupts

	Code Banking
	User-Managed Bank Switching for Data Intensive Projects
	Project-Managed Bank Switching

	Caching
	Interrupt Vector Table
	Device Comparison and Porting Checklist
	Analog-to-Digital Converter (ADC)
	Digital-to-Analog Converter (DAC)
	Voltage Reference (VREF)
	Comparators
	Reset Sources
	Oscillators
	FLASH Memory
	External Memory Interface (EMIF)
	Port Input/Output
	System Management Bus/I2C Bus (SMBUS0)
	Enhanced Serial Peripheral Interface (SPI0)
	UART
	Timers
	Programmable Counter Array (PCA)
	JTAG

	Software Examples
	Example 1
	Example 2

