DRV411EVM User's Guide This user's guide describes the characteristics, operation, and use of the DRV411 Evaluation Module (EVM). The DRV411 is a signal conditioning and 250-mA full-bridge drive circuit for closed-loop Hall effect sensors. A complete circuit description, schematic diagram, and bill of materials (BOM) are included. ## Contents | 1 | EVM Overview | 2 | |---|--|---| | | 1.1 Features | | | | 1.2 Introduction | 2 | | 2 | DRV411EVM Hardware | 2 | | | 2.1 Default Jumper Settings | 3 | | | 2.2 Available Test Points | 3 | | 3 | Power Supply, Reference, and Gain Options | 3 | | | 3.1 Reference Voltage Selection | 3 | | | 3.2 Gain Setting and Compensation Frequency | 4 | | 4 | EVM Operation | 4 | | 5 | DRV411EVM Schematic and Bill of Materials | | | | 5.1 DRV411EVM Schematic | | | | 5.2 DRV411EVM Bill of Materials | | | 6 | Related Documentation from Texas Instruments | 7 | | | List of Figures | | | 1 | DRV411EVM Board | 2 | | 2 | DRV411EVM Schematic | | | | | | | | List of Tables | | | 1 | Jumper Descriptions | 3 | | 2 | Test Point (TP) Descriptions | | | 3 | Voltage Selection Options | 3 | | 4 | Gain and Compensation Frequency Settings | 4 | | 5 | DRV411EVM Bill of Materials | 6 | EVM Overview www.ti.com ## 1 EVM Overview ## 1.1 Features - Full-featured evaluation board for the DRV411 - · Pin sockets for easily changing Hall sensor devices - Built-in reference ## 1.2 Introduction This document provides the information needed to set up and operate the DRV411 evaluation module (EVM), a test platform for the DRV411 full-bridge drive integrated circuit for closed loop Hall-sensor devices. For a more detailed description of the DRV411, please refer to the product data sheet, <u>SBOS693</u>. Additional support documents are listed in <u>Related Documents from Texas Instruments</u>. Throughout this document, the abbreviation EVM and the term evaluation module are synonymous with the DRV411EVM. # 2 DRV411EVM Hardware Figure 1 shows the complete DRV411EVM hardware. The evaluation kit consists of a single printed-circuit board with a variety of test points (to monitor supply, reference, and output voltages) and jumpers to enable or disable various features of the DRV411 device. Figure 1. DRV411EVM Board ## 2.1 Default Jumper Settings Table 1 provides descriptions of the jumpers on the EVM and their function: **Table 1. Jumper Descriptions** | Jumper | Default State | Description | |---------|---------------|---| | GSEL1 | Open | Gain select options, selects the gain of the Hall amplifier | | GSEL2 | Open | Gain select options, selects the gain of the Hall amplifier | | REFSEL1 | Open | Reference select options, selects the reference mode | | REFSEL2 | Open | Reference select options, selects the reference mode | ## 2.2 Available Test Points Table 2 provides descriptions of the test points on the EVM and their functions: Table 2. Test Point (TP) Descriptions | TP Name | Description | |---------|--| | VCC | EVM power, monitor with respect to GND test point | | GND | System ground, there are 5 GND test points for ease of monitoring | | IAIN1 | Inverting input of the differential amplifier | | IAIN2 | Non-inverting input of the differential amplifier | | ERROR | Error flag output (open drain output with 10-kΩ pull-up) | | OR | Over Range Indicator (open drain output with 10-kΩ pull-up) | | VOUT | Output of the differential amplifier | | REFIN | Input for zero reference to differential amplifier | | Other | There are four additional test points for use in monitoring the state of the reference select pins as well as the gain select pins | ## 3 Power Supply, Reference, and Gain Options The EVM requires a single power supply in the range of +2.7-V to +5.5-V DC, for proper operation of the device. The EVM (without a Hall sensor installed) draws less than 10 mA at 5.5 V. Power can be applied to the EVM via the banana jacks labeled VCC and GND, or through clip leads directly to the VCC and GND test points. When operating the EVM, TI recommends to use a linear DC bench supply, current limited to 50 mA. # 3.1 Reference Voltage Selection The EVM provides two jumpers to configure the reference voltage output selection. The reference selection input pins are pulled to ground, or logic '0' by default (jumpers 'open'). Closing the jumpers places the associated REFSEL pin at the applied Vcc potential (logic '1'). Table 3 provides a description of the available options: **Table 3. Voltage Selection Options** | Mode | REFSEL1 | REFSEL2 | Description | |--------------------|---------|---------|---| | REF = 2.5 V | Open | Open | Used with Hall-sensor supply of 5 V | | REF = 1.65 V | Closed | Open | Used with Hall-sensor supply of 3.3 V | | Ratiometric Output | Closed | Closed | Provides a reference output centered on VCC/2 | EVM Operation www.ti.com # 3.2 Gain Setting and Compensation Frequency The DRV411EVM provides two jumpers to configure the gain and sensor excitation frequency selection. The gain selection input pins are pulled to ground, or logic '0' by default (jumpers 'open'). Closing the jumpers places the associated GSEL pin at the applied Vcc potential (logic '1'). Table 4 provides a description of the available options: | Table 4. | Gain and | Com | pensation | Frequence | cy Settings | |----------|----------|-----|-----------|-----------|-------------| | | | | | | | | Mode | GSEL1 | GSEL2 | Description | | | |---------------------------------|--------|--------|--|--|--| | Gain_1 | Open | Open | G = 250 V/V, Compensation frequency set to 3.8 kHz | | | | Gain_2 Open Closed | | Closed | G = 250 V/V, Compensation frequency set to 7.2 kHz | | | | Gain_3 | Closed | Open | G = 1000 V/V, Compensation frequency set to 3.8 kHz | | | | External Gain /
Compensation | Closed | Closed | Excitation/chopping circuitry switched off. The gain and compensation is set by using external resistors and capacitors (R3/C3 and R4/C4). | | | # 4 EVM Operation There are four pin sockets on the left side of the EVM for mounting the user-supplied Hall-sensor. Besides indium antimonide (InSb) Hall elements, the DRV411 can also be connected to symmetrical gallium arsenide (GaAs) Hall elements such as the HG-302C from AKM Semiconductor. With a Hall sensor mounted to the DRV411, the user is then free to mount their compensation coil to the 'drilling area' noted on the EVM. The area inside the silkscreen is free of any copper and can be used as needed to provide a means of securing the coil to the EVM. Connectors J1 and J2 are provided to terminate the compensation coil. Pins 1 and 2 of both J1 and J2 are connected together and then back to the ICOMP and IAIN pins of the DRV411 (please refer to the DRV411EVM Schematic, for details). The coil can be terminated at either the J1 or the J2 location, or between J1 and J2, if necessary. Once the sensor and compensation coil are mounted to the EVM, apply a current limited (50 mA max) 5-V DC source to the banana jacks or test points labeled VCC and GND. The current to be monitored by the DRV411 can then be applied through the compensation coil primary winding. #### 5 DRV411EVM Schematic and Bill of Materials Section 5.1 contains the schematic for this EVM and Section 5.2 presents the BOM for this EVM. #### 5.1 DRV411EVM Schematic Figure 2 illustrates the EVM schematic. Figure 2. DRV411EVM Schematic # 5.2 DRV411EVM Bill of Materials Table 5 is the complete BOM for this EVM. # Table 5. DRV411EVM Bill of Materials | Item | Qty | Ref Des | Value | Description | Manufacturer | Part Number | |------|-----|----------------------------------------------------------------------|----------|---------------------------------------|---------------------|--------------------| | 1 | 1 | C1 | 0.01uF | CAP CER 10000PF 50V 5% NP0 0805 | Murata | GRM2195C1H103JA01D | | 2 | 1 | C2 | 1uF | CAP CER 1UF 25V 10% X7R 0805 | Taiyo Yuden | TMK212B7105KG-T | | 3 | 0 | C3, C4, C5 | | Not Installed | | | | 4 | 1 | C6 | 10uF | CAP TANT 10UF 20V 20% 1210 | AVX | TPSB106M020R1000 | | 5 | 4 | D1, D2, D3, D4 | | DIODE SCHOTTKY 350MA SGL SOD-323, 40V | ST Micro. | BAT48JFILM | | 6 | 6 | J1, J2, GSEL1, GSEL2, REFSEL1, REFSEL2 | | CONN HEADER VERT SGL 2POS GOLD | 3M | 961102-6404-AR | | 7 | 1 | J3 | | CONN HEADER VERT SGL 3POS GOLD | 3M | 961103-6404-AR | | 8 | 1 | J4 | | CONN HEADER 4POS 2MM VERT SMD | 3M | 951104-2530-AR-PR | | 9 | 2 | VCC, GND | | JACK NON-INSULATED .218" | Keystone | 575-4 | | 10 | 1 | R1 | 1.00kohm | RES 1.0K OHM 1/8W .1% 0805 SMD | Susumu | RG2012P-102-B-T5 | | 11 | 1 | R2 | 10.0 ohm | RES 10.0 OHM 1W .1% 1206 | Vishay | PHP01206E10R0BST5 | | 12 | 0 | R3, R4 | | Not Installed | | | | 13 | 8 | R5, R6, R7, R8, R9, R13, R14, R15 | 0ohm | RES 0.0 OHM 1/8W 0805 SMD | Vishay-Dale | CRCW08050000Z0EA | | 14 | 6 | R10, R11, R16, R17, R18, R19 | 10.0kohm | RES 10.0K OHM 1/8W 1% 0805 SMD | Vishay-Dale | CRCW080510K0FKEA | | 15 | 1 | R12 | 39.2 ohm | RES 39.2 OHM 1/8W 1% 0805 SMD | Vishay-Dale | CRCW080539R2FKEA | | 16 | 10 | IAIN1, IAIN2, ERROR, OR, VOUT, REFIN, GSEL1, GSEL2, REFSEL1, REFSEL2 | | TEST POINT PC COMPACT .063"D YLW | Keystone | 5009 | | 17 | 2 | VCC | | TEST POINT PC COMPACT .063"D RED | Keystone | 5005 | | 18 | 6 | GND | | TEST POINT PC COMPACT .063"D BLK | Keystone | 5006 | | 19 | 1 | U1 | | Hall Effect IC, QFN-20 | Texas Instruments | DRV411RGP | | 20 | 4 | X1-pin sockets | | CONN SOCKET MINI SPRING TIN | TE Connectivity | 5050935-2 | | 21 | 0 | X1-device | | Not Installed | | | | 22 | 5 | NA | | SHUNT LP W/HANDLE 2 POS 30AU | TE Connectivity | 881545-2 | | 23 | 4 | NA | | STANDOFF HEX 4-40THR ALUM 1"L | Keystone | 2205 | | 24 | 4 | NA | | MACHINE SCREW PAN PHILLIPS 4-40 | B&F Fastener Supply | PMSSS 440 0025 PH | | 25 | 1 | NA | | Printed Circuit Board | TI | 6570099 | # 6 Related Documentation from Texas Instruments DRV411 product data sheet, SBOS693 Revision History www.ti.com # **Revision History** | CI | Changes from Original (August 2013) to A Revision | | | | | | |----|---------------------------------------------------|---|--|--|--|--| | • | Added link for the DRV411 data sheet | 2 | | | | | | • | Updated Gain_1, Gain_2, and Gain_3 descriptions | 4 | | | | | | | | | | | | | NOTE: Page numbers for previous revisions may differ from page numbers in the current version. ## **EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS** Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. #### REGULATORY COMPLIANCE INFORMATION As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. #### General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. # For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant #### Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. #### FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - · Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. ## For EVMs annotated as IC - INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. #### Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement. ## Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. #### Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. ## [Important Notice for Users of EVMs for RF Products in Japan] ## This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: - Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan, - 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or - 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan ## http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 - 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 - 2. 実験局の免許を取得後ご使用いただく。 - 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp # EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: - 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. - 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. - 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. - 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. **Agreement to Defend, Indemnify and Hold Harmless.** You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>