AEAT-6010/6012 Magnetic Encoder

10 or 12 bit Angular Detection Device

Data Sheet

Description

Avago Technologies' AEAT-60xx series of magnetic encoders provides an integrated solution for angular detection. With ease of use in mind, these magnetic encoders are ideal for angular detection within 360°. Based on magnetic technologies, the device is non-contact and ensures reliable operations. It is able to provide absolute angle detection upon power-up, with a resolution of 0.0879°(12 bits version) or 0.35°(10bits version), which is equivalent to 4096 and 1024 positions per revolution respectively. The positional data is provided in serial bit stream. There is no upper speed limit; the only restriction is that there will be fewer samples per revolution as the speed increases.

Magnetic Encoder Magnetic Encoder Magnet Sensor PCB Assembly Magnet Snap Ring Notor Plastic Hub Plastic Hub Plastic Base Plate 2 x screws

Features

- 10 or 12 bits resolution
- Contactless sensing technologies
- Wide temperature range from -40° to 125°C
- Absolute angular position detection
- Synchronous serial interface (SSI) output for absolute position data (binary format)
- Code monotony error = ± 1 LSB
- 5V supply
- Easy Assembly, No Signal Adjustment required
- RoHS compliant

Applications

- Flow meter
- Angular detection
- Knob control
- Rotary encoder

Note: "This product is not specifically designed or manufactured for use in any specific device. Customers are solely responsible for determining the suitability of this product for its intended application and solely liable for all loss, damage, expense or liability in connection with such use."

Exploded View

Device Selection Guide^[1]

Part Number	Resolution (bit)	Operating Temperature (°C)	Output Communication	DC Supply Voltage (V), V _{DD}
AEAT-6012-A06	12	-40 to +125	Serial	+5.0
AEAT-6010-A06	10	-40 to +125	Serial	+5.0

Notes:

1. For other options of Magnetic Encoder, please refer to factory.

Table 1. Absolute Maximum Ratings^[2, 3]

Parameter	Symbol	Limits	Units	Notes	
DC Supply Voltage at pin $V_{DD} = 5V$	V _{DD}	-0.3 to + 7	V		
Input Voltage	Vi	-0.3 to VDD+0.3	V		
Storage Temperature	T _{STG}	-40 to 125	°C		

Notes:

2. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

3. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 2. Recommended Operating Condition

Parameter	Symbol	Values	Units	Notes	
DC Supply Voltage at pin $V_{DD} = 5V$	V _{DD}	+4.5 / +5.5	V		
Ambient Temperature	T _{amb}	-40 to +125	°C		
Maximum Read-out Frequency	f _{CLK}	≤1	MHz	>0 MHz	

Table 3. DC Characteristics

DC Characteristics over Recommended Operating Range, typical at 25 °C

				Values			
Parameter	Symbol	Condition	Min	Тур.	Мах	Units	Notes
VDD Supply Current	I _{DD}			16	20	mA	
Output High Voltage D0	V _{OH}		V _{DD} -0.5			V	
Output Low Voltage D0	V _{OL}				V _{SS} +0.4	V	
Output Current D0	Ι _Ο				4	mA	V_{DD} pin = 4.5V
Input High Voltage CLK, CSn	V _{IH}		0.7*V _{DD}				4
Input Low Voltage CLK, CSn	VIL				0.3*V _{DD}		

Note:

4. CSn is internal pull-up.

Package Dimensions

Figure 1. Package and recommended mounting dimension

Parameters

8 ± 0.18 mm)

Note:- For high temperature application, it is highly recommended that adhesive be applied at least to the screw and the base plate interface. Refer Application Note for further details.

Table 4. Timing Characteristics

				Values			
Parameter	Symbol	Condition	Min	Тур.	Мах	Units	Notes
Data output activated (logic high)	T _{DO active}				100	ns	1
First data shifted to output register	t _{CLK FE}		500			ns	2
Start of data output	T _{CLK/2}		500			ns	3
Data output valid	T _{DO valid}				375	ns	4
Data output tristate	T _{DO tristate}				100	ns	5
Pulse width of CSn	T _{CSn}		500			ns	6
Sampling rate for absolute output	f _{abs}		9.9	10.42	10.94	kHz	7
Power-up time	t _{CF}						8
10-bit version			-	-	50	ms	
12-bit version			-	-	20	ms	

Notes:

Time between falling edge of CSn and data output activated
Time between falling edge of CSn and first falling edge of CLK

3. Rising edge of CLK shifts out one bit a time

4. Time between rising edge of CLK and data output valid

5. After the last bit DO changes back to "tristate"

6. CSn=high; To initiate read-out of next angular position

7. Internal sampling rate.

8. Until internal compensation finished

Timing Characteristics

Notes:

1. Please refer to Table 4 for Timing Characteristics.

2. For 12 bits version; the Positional Data Bits will start with D11 instead and end at D0.

Figure 2. Timing Diagram for 10 bit Magnetic Encoder

Table 5. Linearity

Parameter	Symbol	Min.	Тур.	Max	Units	Notes
Integral Non-Linearity	INL	-	± 0.8 ^[1]	± 2.4 ^[2]	Deg.	
Differential Non-Linearity						
10-bit version	DNL	-	-	± 0.176	Deg.	No missing codes
12-bit version		-	-	± 0.044	Deg.	No missing codes

Notes:

1. Average value at typical operating and mounting conditions.

2. Maximum value over recommended operating range and over radial & axial mounting tolerances.

Linearity Definitions

Integral non-linearity

Integral non-linearity (INL) is the maximum deviation between actual angular position and the position indicated by the encoder's output count, over one revolution. It is defined as the most positive linearity error +INL or the most negative linearity error –INL from the best fit line, whichever is larger.

Figure 3. Integral non-linearity

Table 6. Environmental Specifications

Parameter	Reference Standard	Test Conditions	Level
Electromagnetic Compatibility (EMC) ^[1]			
Electrostatic discharge (ESD) immunity	IEC/EN 61000-4-2	8kV	
Power frequency magnetic field immunity	IEC/EN 61000-4-8	30 A/m (continuous field)	
		300 A/m (short duration field)	Level 4
Pulse magnetic field immunity	IEC/EN 61000-4-97	1000 A/m	Level 5
Damped oscillatory magnetic field immunity	IEC/EN 61000-4-10	100 A/m	Level 5
Mechanical Durability			
Vibration (Operating)	IEC/EN 60068-2-6	10-500Hz at 5G	
Shock	IEC/EN 60068-2-27	6ms at 200G	

Notes:

1. Suitable for applications in Industrial Environment Class 4.

Differential non-linearity

Differential non-linearity (DNL) is the maximum deviation of the step length from one position to the next.

Electrical Connections

1VDD5V Supply Voltage2CSnChip Select – Input (See Figure 2)3VSSSupply Ground4CLKSerial Clock - Input (See Figure 2)5DOSerial Data - Output. (See Figure 2)

Description

Figure 4. Electrical Connections

Figure 5. Basic connector dimensions

0.50 ±0.01

11.85 ±0.1

Alignment Tool Set - Part number HEDS-8934

Pin

Symbol

This optional alignment tool set consists of a gap setting plate and a centering jig. Refer to Application Note 5317 for the assembly guide.

Figure 6. Alignment tool set and recommended dimensions

Ordering Information

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-0188EN - August 12, 2011

