

6-Channel, Muxed Input Line Inversion LCD Gamma Buffer

ADD8506

FEATURES

Single-supply operation: 3.3 V to 6.5 V Rail-to-rail input, rail-to-rail output High output current: 380 mA Low supply current: 3.9 mA Stable with 1 nF loads Wide temperature range: -40°C to +105°C 24-lead, Pb-free, TSSOP package

APPLICATIONS

LCD line inversion gamma references Car navigation panels Personal media player panels

GENERAL DESCRIPTION

The ADD8506 has 6-channel LCD gamma reference buffers designed to drive column driver gamma inputs in line inversion panels. Each buffer channel has an A/B input to select between two gamma voltage curves. These buffer channels drive the resistor ladders of LCD column drivers for gamma correction. The ADD8506 outputs have high slew rates and output drives that increase the stability of the reference ladder, resulting in optimal gray scale and visual performance.

The ADD8506 is specified over the -40° C to $+105^{\circ}$ C temperature range. It is available in a 24-lead thin shrink small outline (TSSOP), surface-mount, Pb-free package.

PIN CONFIGURATION DIAGRAM

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADD8506

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Pin Configuration Diagram	1
Revision History	2
Specifications	3
Electrical Characteristics	3
Absolute Maximum Ratings	4

Thermal Resistance4
ESD Performance4
ESD Caution4
Typical Performance Characteristics5
Applications6
Outline Dimensions7
Ordering Guide7

REVISION HISTORY

9/05—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{CC} = 5 V, T_A = 25°C, unless otherwise noted. V_{IN} denotes buffer input voltage; I_{LOAD} denotes load current; R_L denotes load resistance; C_L denotes load capacitance.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} \leq V_{\text{IN}} \leq 5 \text{ V}$			20	mV
Input Common-Mode Voltage Range	Vсм		0		5	V
Input Bias Current	IB	$V_{IN} = 2.5 V$		2	50	nA
Voltage Gain	Avo		0.985			V/V
OUTPUT CHARACTERISTICS						
Output Voltage High	V OH	$I_{LOAD} = +20 \text{ mA}$	4.75			V
Output Voltage Low	Vol	$I_{LOAD} = -20 \text{ mA}$			0.2	V
Output Resistance	Rout	$-20 \text{ mA} \leq I_{\text{LOAD}} \leq +20 \text{ mA}; 0.5 \text{ V} \leq V_{\text{IN}} \leq 4.5 \text{ V}$		0.20		Ω
Output Short Circuit Current	lsc		120	380		mA
POWER SUPPLY						
Supply Current	Isy	$V_{IN} = 2.5 V$		3.9	5.1	mA
Supply Voltage Range	V _{cc}		3.3		6.5	V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$C_{L} = 15 \text{ pF}$		7.0		V/µs
		$R_L = 250 \Omega$		6.2		V/µs
Settling Time	ts	$C_L = 200 \text{ pF}, R_L = 10 \text{ k}\Omega$		2.5	6	μs
LOGIC INPUT CHARACTERISTICS						
Input Current Low	lı∟	$V_{IN} = 0.0 V$			100	nA
Input Current High	l _{iH}	$V_{IN} = 5.0 V$			100	nA
Input Voltage Low	VIL	$V_{CC} = 5.0 \text{ V}, -40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$			0.8	V
Input Voltage Low	VIL	$V_{CC} = 3.3 \text{ V}, -40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$			0.7	V
Input Voltage High	VIH	$V_{CC} = 5.0 \text{ V}, -40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$	1.7			V
Input Voltage High	VIH	$V_{CC} = 3.3 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$	1.4			V

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	7 V
Input Voltage	GND to Vcc
Storage Temperature Range	-65°C to +150°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 3. Thermal Package Characteristics

Model	Package Type	θ _{JA} 1	θ」c²	Unit
ADD8506WRUZ	24-Lead Pb-Free TSSOP	128	45	°C/W

 $^1\,\theta_{JA}$ is specified for natural convection on a two-layer board. $^2\,\theta_{JC}$ is specified for natural convection on a two-layer board.

ESD PERFORMANCE

Table 4.

Model	HBM ¹	MM ²	FICDM ³
ADD8506WRUZ	3.5 kV	200 V	1.0 kV

¹ Human body model.

² Machine model.

³ Field induced charge device model.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Supply Current vs. Supply Voltage

Figure 3. △ Output Voltage to Supply Rail vs. Load Current

Figure 4. Offset Voltage vs. Temperature

Figure 5. Transient Response—Rising

Figure 6. Transient Response—Falling

APPLICATIONS

The ADD8506 has CMOS buffers with A/B inputs to select between two different reference voltages set up by an external resistor ladder. Input bias currents are orders of magnitude less than competitive parts. This allows the use of a very large resistor ladder to save supply current.

The buffer outputs are designed to drive resistive or capacitive loads. Therefore, to attain the best display performance, do not use resistors in series with these outputs. Outputs have high slew rates and 6 µs settling times. Each output delivers a minimum of 120 mA, ensuring a fast response to varying loads. Power supply pins on the ADD8506 have multiple ground (GND) and supply (V_{CC}) connections. Because of the high peak currents that these buffers deliver, it is recommended that all GND and V_{CC} pins be connected and suitably bypassed.

Table 5. MUX Function

A/B Select	Input
Logic High	INAx
Logic Low	INBx

1. RAX RESISTORS ARE USED TO SET POSITIVE INVERSION GAMMA VOLTAGES. 2. RBx RESISTORS ARE USED TO SET NEGATIVE INVERSION GAMMA VOLTAGES.

Figure 7. Typical Application

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AD Figure 8. 24-Lead Thin Shrink Small Outline Package [TSSOP]

(RU-24) Dimensions shown in millimeters

ORDERING GUIDE

Temperature		Package	Ordering
Range	Package Description	Option	Quantity
-40°C to +105°C	24-Lead Thin Shrink Small Outline Package [TSSOP], Tube	RU-24	96
–40°C to +105°C	24-Lead Thin Shrink Small Outline Package [TSSOP], 7" Reel	RU-24	1,000
-40°C to +105°C	24-Lead Thin Shrink Small Outline Package [TSSOP], 13" Reel	RU-24	2,500
	Range -40°C to +105°C -40°C to +105°C	RangePackage Description-40°C to +105°C24-Lead Thin Shrink Small Outline Package [TSSOP], Tube-40°C to +105°C24-Lead Thin Shrink Small Outline Package [TSSOP], 7" Reel	RangePackage DescriptionOption-40°C to +105°C24-Lead Thin Shrink Small Outline Package [TSSOP], TubeRU-24-40°C to +105°C24-Lead Thin Shrink Small Outline Package [TSSOP], 7" ReelRU-24

 1 Z = Pb-free part.

ADD8506

NOTES

© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05549-0-9/05(0)

www.analog.com

Rev. 0 | Page 8 of 8