

Known Good Die

High Voltage, Precision Difference Amplifier

AD8202-KGD

FEATURES

Qualified for automotive applications High common-mode voltage range -8 V to +28 V operating at 5 V supply Buffered output voltage Gain = 20 V/V Low-pass filter (1-pole or 2-pole) Excellent ac and dc performance ±1 mV voltage offset 1 ppm/°C typical gain drift 80 dB CMRR minimum dc to 10 kHz Known good die (KGD): these die are fully guaranteed to data sheet specifications

APPLICATIONS

High-side current sensing Motor controls Solenoid controls Power management Low-side current sensing Diagnostic protection

GENERAL DESCRIPTION

The AD8202-KGD is a single-supply difference amplifier ideal for amplifying and low-pass filtering small differential voltages in the presence of a large common-mode voltage. The input common-mode voltage range extends from -8 V to +28 V at a single +5 V supply. The AD8202-KGD is qualified for automotive applications.

Automotive applications demand robust, precision components for improved system control. The AD8202-KGD provides excellent ac and dc performance, minimizing errors in the application.

FUNCTIONAL BLOCK DIAGRAM

Typical offset and gain drift are 5 $\mu V/^{\circ}C$ and 1 ppm/°C respect-tively. The device also delivers a minimum CMRR of 80 dB from dc to 10 kHz.

The AD8202-KGD features an externally accessible 100 k Ω resistor at the output of the preamplifier (A1), which can be used for low-pass filtering and for establishing gains other than 20.

Additional application and technical information can be found in the AD8202 data sheet.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4

ESD Caution4
Pad Configuration and Function Descriptions5
Outline Dimensions
Die Specifications and Assembly Recommendations6
Ordering Guide6
Automotive Products

REVISION HISTORY

3/12—Revision 0: Initial Version

SPECIFICATIONS

 $T_{\rm OPR}$ = $-40^{\circ}C$ to +150°C, $T_{\rm A}$ = 25°C, $V_{\rm S}$ = 5 V.

Table 1.

Parameter	Test Conditions	Min	Тур	Мах	Unit
SYSTEM GAIN					
Initial			20		V/V
Error	$0.02~V \leq V_{\text{OUT}} \leq 4.8,~dc @~T_{\text{A}}$			±0.3	%
vs. Temperature	T _{OPR}	0		+30	ppm/°C
VOLTAGE OFFSET					
Initial Offset (Referred to Input [RTI])	$V_{CM} = 0.15 V, T_{A}$			±1	mV
vs. Temperature	$T = -40^{\circ}C \text{ to } +125^{\circ}C$			±10	μV/°C
	T _{OPR}			±15	µV/°C
INPUT					
Input Impedance					
Differential		260	325	390	kΩ
Common Mode		135	170	205	kΩ
Input Common-Mode Voltage (V _{CM}),		-8		+28	V
Continuous					
CMRR ¹	$V_{CM} = -8 V \text{ to } +28 V$				
	f = dc	82			dB
	f = 1 kHz	82			dB
	$f = 10 \text{ kHz}^2$	80			dB
PREAMPLIFIER (A1)					
Gain			10		V/V
Gain Error	$0.02 V \le V_{OUT} \le (V_s - 0.2 V), dc, T_{OPR}$			±0.3	%
Output Voltage Range		0.02		4.8	V
Output Resistance		97	100	103	kΩ
OUTPUT BUFFER (A2)					
Gain			2		V/V
Gain Error	$0.02 \text{ V} \le V_{\text{OUT}} \le 4.8 \text{ V} dc$			±0.3	%
Output Voltage Range		0.02		4.8	V
Input Bias Current			40		nA
Output Resistance			2		Ω
DYNAMIC RESPONSE					
System Bandwidth	V _{IN} = 0.1 V p-p, V _{OUT} = 2.0 V p-p	30	50		kHz
Slew Rate	$V_{IN} = 0.2 \text{ V dc}, V_{OUT} = 4 \text{ V step}$		0.28		V/µs
NOISE	·				
0.1 Hz to 10 Hz			10		μV p-p
Spectral Density, 1 kHz (RTI)			275		nV/√Hz
POWER SUPPLY			-		
Operating Range		3.5		12	v
Quiescent Current vs. Temperature	$V_{OUT} = 0.1 V dc$		0.25	1.0	mA
PSRR	$V_{\rm s} = 3.5 \text{V}$ to 12 V	75	83		dB
TEMPERATURE RANGE	For specified performance at T _{OPR}	-40		+150	°C

¹ Source imbalance < 2 Ω .

² The AD8202-KGD preamplifier exceeds 80 dB CMRR at 10 kHz. However, because the output is available only by way of the 100 kΩ resistor, even a small amount of pin-to-pin capacitance between the IN pins and the A1 and A2 pins might couple an input common-mode signal larger than the greatly attenuated preamplifier output. The effect of pin-to-pin coupling can be negated in all applications by using a filter capacitor from Pin 3 to GND.

ABSOLUTE MAXIMUM RATINGS

Table 2.

ParameterRatingSupply Voltage12.5 VContinuous Input Voltage (Common Mode)35 VReversed Supply Voltage Protection0.3 VOperating Temperature Range (Die)-40°C to +150°COutput Short-Circuit DurationIndefinite	14010 21	
Continuous Input Voltage (Common Mode)35 VReversed Supply Voltage Protection0.3 VOperating Temperature Range (Die)-40°C to +150°COutput Short-Circuit DurationIndefinite	Parameter	Rating
Reversed Supply Voltage Protection0.3 VOperating Temperature Range (Die)-40°C to +150°COutput Short-Circuit DurationIndefinite	Supply Voltage	12.5 V
Operating Temperature Range (Die)-40°C to +150°COutput Short-Circuit DurationIndefinite	Continuous Input Voltage (Common Mode)	35 V
Output Short-Circuit Duration Indefinite	Reversed Supply Voltage Protection	0.3 V
	Operating Temperature Range (Die)	-40°C to +150°C
	Output Short-Circuit Duration	Indefinite
Lead Temperature Range (Soldering, 10 sec) 300°C	Lead Temperature Range (Soldering, 10 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PAD CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pad Configuration

Table 3. Pad Function Descriptions

	Coor	dinates			
Pad No.	X-Axis (µm)	Y-Axis (µm)	Mnemonic	Pad Type	Description
1	-205	+409	-IN	Single	Inverting Input Pad
2	-413	+285	GND	Double	Ground Pad
3	-413	-229	A1	Single	Preamplifier (A1) Output Pad
4	-309	-410	A2	Single	Buffer (A2) Input Pad
5	+272	-410	OUT	Single	Buffer (A2) Output Pad
6	+417	-121	+Vs	Single	Supply Pad
7			NC		No Connect
8	+205	+409	+IN	Single	Noninverting Input Pad

OUTLINE DIMENSIONS

Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 4. Die Specifications

Parameter	Value	Unit ¹
Chip Size	1090 × 1105	μm
Scribe Line Width	75 × 75	μm
Die Size	1.180 × 1.165	mm (maximum)
Thickness	381 ± 10	μm
Bond Pad	92 × 92	μm (minimum)
Bond Pad Composition	0.5 AlCu	%
Backside	Bare	N/A
Passivation	Polymide	N/A

¹ N/A means not applicable.

Table 5. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	No special requirements
Bonding Method	Gold ball or aluminum wedge
Bonding Sequence	Any

ORDERING GUIDE

Model ¹	Temperature Range	Package Option
AD8202W-KGD-R7	-40°C to +150°C	C-8-1

¹ W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD8202W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

AD8202-KGD

NOTES

AD8202-KGD

NOTES

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10596-0-3/12(0)

www.analog.com