

# DI CMOS Protected Analog Switches

FEATURES

Latch-Proof Overvoltage-Proof: ±25V Low R<sub>ON</sub>: 75Ω Low Dissipation: 3mW TTL/CMOS Direct Interface Silicon-Nitride Passivated Monolithic Dielectrically-Isolated CMOS



## GENERAL DESCRIPTION

The AD7510DI, AD7511DI and AD7512DI are a family of latch proof dielectrically isolated CMOS switches featuring overvoltage protection up to  $\pm 25V$  above the power supplies. These benefits are obtained without sacrificing the low "ON" resistance (75 $\Omega$ ) or low leakage current (400pA), the main features of an analog switch.

The AD7510DI and AD7511DI consist of four independent SPST analog switches packaged in a 16-pin DIP. They differ only in that the digital control logic is inverted. The AD7512DI has two independent SPDT switches packaged in a 14-pin DIP.

Very low power dissipation, overvoltage protection and TTL/ CMOS direct interfacing are achieved by combining a unique circuit design and a dielectrically isolated CMOS process. Silicon nitride passivation ensures long term stability while monolithic construction provides reliability.

## **PIN CONFIGURATIONS**



#### **ORDERING INFORMATION**

| Plastic<br>(Suffix N)                                                            | Ceramic<br>(Suffix D)                                                            | Operating<br>Temperature<br>Range |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|
| AD7510DIJN<br>AD7510DIKN<br>AD7511DIJN<br>AD7511DIKN<br>AD7512DIJN<br>AD7512DIKN |                                                                                  | 0 to +70°C                        |
|                                                                                  | AD7510DIJD<br>AD7510DIKD<br>AD7511DIJD<br>AD7511DIKD<br>AD7512DIJD<br>AD7512DIJD | −25°C to +85°C                    |
|                                                                                  | AD7510DISD<br>AD7511DISD<br>AD7511DITD<br>AD7512DISD<br>AD7512DISD               | −55°C to +125°C                   |

### CONTROL LOGIC

- AD7510DI: Switch "ON" for Address "HIGH"
- AD7511DI: Switch "ON" for Address "LOW"
- AD7512DI: Address "HIGH" makes S1 to Out 1 and S3 to Out 2

# **SPECIFICATIONS** (V<sub>DD</sub> = +15V, V<sub>SS</sub> = -15V unless otherwise noted)

PARAMETER

ANALOG SWITCH

|            |              | COMMERCIAL VEI               | RSIONS (J, K)                        |                                                              |
|------------|--------------|------------------------------|--------------------------------------|--------------------------------------------------------------|
| MODEL      | VERSION      | +25°C                        | 0 to +70°C (N)<br>-25°C to +85°C (D) | TEST CONDITIONS                                              |
| All<br>All | Ј, К<br>Ј, К | 75Ω typ, 100Ω max<br>20% typ | 175Ω max                             | $-10V \le V_{\rm D} \le +10V$<br>$I_{\rm DS} = 1.0 {\rm mA}$ |

| R <sub>ON</sub> <sup>1</sup><br>R <sub>ON</sub> vs V <sub>D</sub> (V <sub>S</sub> ) | All<br>All | Ј, К<br>Ј, К | 75Ω typ, 100Ω max<br>20% typ          | 175 $\Omega$ max | $-10V \leq V_{\rm D} \leq +10V$ $I_{\rm DS} = 1.0 {\rm mA}$                                                                            |
|-------------------------------------------------------------------------------------|------------|--------------|---------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>ON</sub> Drift<br>R <sub>ON</sub> Match                                      | All<br>All | J, K<br>J, K | +0.5%/°C typ<br>1% typ                |                  | $V_{\rm D} = 0, I_{\rm DS} = 1.0 {\rm mA}$                                                                                             |
| R <sub>ON</sub> Drift<br>Match                                                      | All        | Ј, К         | 0.01%/°C typ                          |                  | 50 ° U                                                                                                                                 |
| $I_{\mathbf{D}}$ ( $I_{\mathbf{S}}$ ) OFF <sup>1</sup>                              | All        | Ј, К         | 0.5nA typ, 5nA max                    | 500nA max        | $V_D = -10V, V_S = +10V$ and<br>$V_D = +10V, V_S = -10V$                                                                               |
| $I_{\rm D}$ ( $I_{\rm S}$ ) <sub>ON</sub> <sup>2</sup>                              | All        | Ј, К         | 10nA max                              |                  | $V_{S} = V_{D} = +10V$ $V_{S} = V_{D} = -10V$                                                                                          |
| lout                                                                                | AD7512DI   | Ј, К         | 15nA max                              | 1500nA max       | $V_{S1} = V_{OUT} = \pm 10V, V_{S2} = \mp 10V$<br>and $V_{S2} = V_{OUT} = \pm 10V, V_{S1} = \mp 10V$                                   |
| DIGITAL CONTROL                                                                     |            |              |                                       |                  |                                                                                                                                        |
| $V_{INL}^{1}_{1}$                                                                   | All        | J, K         |                                       | 0.8V max         |                                                                                                                                        |
| V <sub>INH</sub> <sup>INL 1</sup>                                                   | All        | Ĵ            |                                       | 3.0V min         |                                                                                                                                        |
| T 411                                                                               | All        | ĸ            |                                       | 2.4.V min        |                                                                                                                                        |
| C <sub>IN</sub>                                                                     | All        | J, K         | 3pF typ                               |                  |                                                                                                                                        |
|                                                                                     | All        | J, K         | 10nA max                              |                  | $V_{IN} = V_{DD}$                                                                                                                      |
| I <sub>INH</sub><br>I <sub>INL</sub>                                                | All        | ј, к<br>Ј, К | 10nA max                              |                  | $V_{IN}^{IN} = 0$                                                                                                                      |
|                                                                                     |            |              |                                       | ·                |                                                                                                                                        |
| DYNAMIC<br>CHARACTERISTICS                                                          |            |              |                                       |                  |                                                                                                                                        |
|                                                                                     | AD7510DI   | Ј, К         | 180ns typ                             |                  |                                                                                                                                        |
| ton                                                                                 | AD7511DI   | J, K<br>J, K | 350ns typ                             |                  |                                                                                                                                        |
| torr                                                                                | AD7510DI   | ј, К<br>Ј, К | 350ns typ                             |                  | $V_{IN} = 0$ to +3.0V                                                                                                                  |
| <sup>t</sup> OFF                                                                    | AD7511DI   | J, K         | 180ns typ                             |                  |                                                                                                                                        |
| t <sub>TRANSITION</sub>                                                             | AD7512DI   | J, K         | 300ns typ                             |                  |                                                                                                                                        |
| C <sub>S</sub> (C <sub>D</sub> )OFF                                                 | All        | J, K         | 8pF typ                               |                  |                                                                                                                                        |
| $C_{\rm S} (C_{\rm D}) OFF$<br>$C_{\rm S} (C_{\rm D}) ON$                           | All        | J, K<br>J, K | 17pF typ                              |                  |                                                                                                                                        |
| C (C)                                                                               | All        | Ј, К<br>Ј, К | 1pF typ                               |                  | $V_{\rm D} (V_{\rm S}) = 0V$                                                                                                           |
| $C_{DS}^{T} (\overline{C}_{S-OUT})$<br>$C_{DD}^{T} (C_{SS}^{T})$                    | All        | ј, к<br>Ј, К | 0.5pF typ                             |                  | оход — С                                                                                                                               |
| $C_{DD}$ ( $C_{SS}$ )                                                               | AD7512DI   |              |                                       |                  |                                                                                                                                        |
| C <sub>OUT</sub>                                                                    | AD7312D1   | J, K         | 17pF typ                              |                  |                                                                                                                                        |
| Q <sub>iNJ</sub>                                                                    | All        | J, K         | 30pC typ                              |                  | Measured at S or D terminal.<br>$C_L = 1000 \text{pF}, V_{IN} = 0 \text{ to } 3\text{V},$<br>$V_D (V_S) = +10\text{V to } -10\text{V}$ |
| POWER SUPPLY                                                                        |            |              | · · · · · · · · · · · · · · · · · · · | <u> </u>         |                                                                                                                                        |
|                                                                                     | All        | J, K         | 500µA max                             |                  | All digital inputs - V                                                                                                                 |
| I <sub>SS</sub>                                                                     | All        | Ј, К         | 100µA max                             |                  | All digital inputs = V <sub>INH</sub>                                                                                                  |
|                                                                                     |            |              | 100                                   |                  |                                                                                                                                        |
| <sup>1</sup> DD                                                                     | All        | J, K         | 100μA max                             |                  | All digital inputs = V <sub>INL</sub>                                                                                                  |
| lss '                                                                               | All        | J, K         | 100µA max                             |                  |                                                                                                                                        |

NOTES: <sup>1</sup> 100% tested. <sup>2</sup> Guaranteed, not production tested. <sup>3</sup> A pullup resistor, typically 1-2k $\Omega$  is required to make: "J" versions TTL compatible.

Specifications subject to change without notice.

|                                                               |                                                                      |                              | MILITARY V                                       | ERSIONS (S, T)                                           |                                                                                                                                    |
|---------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|--------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER                                                     | MODEL                                                                | VERSION                      | +25°C                                            | -55°C to +125°C                                          | TEST CONDITIONS                                                                                                                    |
| ANALOG SWITCH                                                 |                                                                      |                              |                                                  | · · · · · · · · · · · · · · · · · · ·                    |                                                                                                                                    |
| R <sub>ON</sub> <sup>1</sup>                                  | All                                                                  | S, T                         | $100\Omega$ max                                  | $175\Omega$ max                                          | $-10V \le V_{D} \le +10V$<br>$I_{DS} = 1mA$                                                                                        |
| $I_{D} (I_{S})_{OFF}^{1}$                                     | All                                                                  | S, T                         | 3nA max                                          | 200nA max                                                | $V_D = -10V, V_S = +10V \text{ and}$<br>$V_D = +10V, V_S = -10V$                                                                   |
| $l_{\rm D} (l_{\rm S})_{\rm ON}^2$                            | All                                                                  | S, T                         | 10                                               |                                                          | $V_{\rm S} = V_{\rm D} = +10V$ and                                                                                                 |
| I <sub>OUT</sub> <sup>I</sup>                                 | AD7512DI                                                             | S, T                         | 9nA max                                          | 600nA max                                                | $V_{S} = V_{D} = -10V$ $V_{S1} = V_{OUT} = \pm 10V$ $V_{S2} = \mp 10V \text{ and}$ $V_{S2} = V_{OUT} = \pm 10V$ $V_{S1} = \mp 10V$ |
| DIGITAL CONTROL                                               |                                                                      |                              |                                                  |                                                          |                                                                                                                                    |
| V <sub>INL</sub> <sup>1</sup>                                 | All                                                                  | S, T                         |                                                  | 0.8V max                                                 |                                                                                                                                    |
| V <sub>INH</sub> <sup>1,3</sup>                               | AD7510DI<br>AD7511DI<br>AD7512DI<br>AD7511DI<br>AD7511DI<br>AD7512DI | S<br>T<br>T<br>S<br>S        |                                                  | 2.4V min<br>2.4V min<br>2.4V min<br>3.0V min<br>3.0V min |                                                                                                                                    |
| INH<br>INH<br>INL                                             | All<br>All                                                           | S, T<br>S, T                 | 10nA max<br>10nA max                             |                                                          | $V_{IN} = V_{DD}$ $V_{IN} = 0$                                                                                                     |
| DYNAMIC<br>CHARACTERISTICS                                    | ,                                                                    | ·                            |                                                  |                                                          |                                                                                                                                    |
| t <sub>ON</sub> <sup>2</sup><br>t <sub>OFF</sub> <sup>2</sup> | AD7510DI<br>AD7511DI<br>AD7510DI<br>AD7511DI                         | S, T<br>S, T<br>S, T<br>S, T | 1.0μs max<br>1.0μs max<br>1.0μs max<br>1.0μs max |                                                          | $V_{IN} = 0$ to $+3V$                                                                                                              |
| tTRANSITION <sup>2</sup>                                      | AD7512DI                                                             | S, Т                         | 1.0µs max                                        |                                                          |                                                                                                                                    |
| POWER SUPPLY                                                  |                                                                      |                              |                                                  |                                                          | and and a set                                                                                                                      |
| $l_{\text{DD}_1}^{l_{\text{DD}_1}}$                           | All<br>All                                                           | S, Т<br>S, Т                 |                                                  | 800μA max<br>800μA max                                   | All digital inputs = V <sub>INH</sub>                                                                                              |
| I <sub>DD</sub><br>I <sub>SS</sub>                            | All<br>All                                                           | S, T<br>S, T                 |                                                  | 500μA max<br>500μA max                                   | All digital inputs = V <sub>INL</sub>                                                                                              |

#### NOTES:

<sup>1</sup>100% tested.

<sup>2</sup>Guaranteed, not production tested. <sup>3</sup> A pullup resistor, typically 1-2kΩ is required to make AD7511DISD and AD7512DISD TTL compatible. Specifications subject to change without notice.

## **ABSOLUTE MAXIMUM RATINGS**

CAUTION: The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high electrostatic fields. Keep unused units in conductive foam at all times. Prior to pulling the devices from the conductive foam, ground the foam to deplete any accumulated charge.



Figure 1. Typical Output Switch Circuitry of AD7510DI Series

CMOS devices make excellent analog switches; however, problems with overvoltage and latch-up phenomenum necessitated protection circuitry. These protection circuits, however, either caused degradation of important switch parameters such as R<sub>ON</sub> or leakage, or provided only limited protection in the event of overvoltage.

The AD7510DI series switches utilize a dielectrically-isolated CMOS fabrication process to eliminate the four-layer substrate found in junction-isolated CMOS, thus providing latch-free operation.

A typical switch channel is shown in Figure 1. The output switching element is comprised of device numbers 4 and 5. Operation is as follows: for an "ON" switch, (in+) is  $V_{DD}$  and (in-) is  $V_{SS}$  from the driver circuits. Device numbers 1 and 2 are "OFF" and number 3 is "ON." Hence, the backgates of the P- and N-channel output devices (numbers 4 and 5) are tied together and floating. (The circled devices are located in separate dielectrically isolated pockets.) Floating the output switch back-gates with the signal input increases the effective threshold voltage for an applied analog signal, thus providing a flatter R<sub>ON</sub> versus V<sub>S</sub> response.

For an "OFF" switch, device number 3 is "OFF," and the back-gates of devices 4 and 5 are tied through  $1k\Omega$  resistors (R1 and R2) to the respective supply voltages through the "ON" devices 1 and 2.

If a voltage is applied to the S or D terminal which exceeds  $V_{DD}$  or  $V_{SS}$ , the S- or D-to-back-gate diode is forward biased; however, R1 and R2 provide current limiting action.

Consequently, without external current limiting resistance (or increased R<sub>ON</sub>), the AD7510DI series switches provide:

- 1. Latch-proof operation
- 2. Overvoltage protection 25V beyond the VSS and VDD supply voltage  $% \mathcal{V}_{DD}$

An equivalent circuit of the output switch element in Figure 2 shows that, indeed, the  $1k\Omega$  limiting resistors are in series with the back-gates of the P- and N-channel output devicesnot in series with the signal path between the S and D terminals.

In some applications it is possible to turn on a parasitic NPN (drain to back-gate to source of the N-channel) transistor, causing device destruction under certain conditions. This case will only manifest itself when a negative overvoltage (and not a positive overvoltage) exists with another voltage source on the other side of the switch. Current limitation through external resistors ( $200\Omega$ ) or current limiting devices (output of op amps) will prevent damage to the device.



Figure 2. AD7510DI Series Output Switch Diode Equivalent Circuit

## TYPICAL PERFORMANCE CHARACTERISTICS



 $R_{ON}$  as a Function of  $V_D$  ( $V_S$ )



tTRANSITION as a Function of Digital Input Voltage



 $R_{ON}$  as a Function of  $V_D$  ( $V_S$ )



ton, toff as a Function of Temperature



IS, (ID)OFF VS VS

<sup>t</sup>TRANSITION as a Function of Temperature

## TYPICAL SWITCHING CHARACTERISTICS



Switching Waveforms for  $V_D = -10V$ 





Switching Waveforms for  $V_D = Open$ 



Switching Waveforms for  $V_D = +10V$ 

 $0.5 \mu s/DIV$ 



Switching Waveforms for  $V_D = 0V$ 

## AD7510DI, AD7511DI TEST CIRCUIT



0.5µs/DIV

## **TYPICAL SWITCHING CHARACTERISTICS**



Switching Waveforms for  $V_{S1} = -10V$ ,  $V_{S2} = +10V$ ,  $R_L = 1k$ 

0.5µs/DIV



Switching Waveforms for  $V_{S1}$  and  $V_{S2} = \partial V$ ,  $R_L = \infty$ 

0.5µs/DIV



Switching Waveforms for  $V_{S1} = +10V$ ,  $V_{S2} = -10V$ ,  $R_L = \infty$ 





Switching Waveforms for  $V_{S1}$  and  $V_{S2}$  = Open,  $R_L$  = 1k

## AD7512DI TEST CIRCUIT

AD7512DI



## TERMINOLOGY

| RON                                                                                                                                                                      | Ohmic resistance between terminals D and S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RON Drift                                                                                                                                                                | Difference between the R <sub>ON</sub> drift of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Match:                                                                                                                                                                   | two switches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R <sub>ON</sub> Match:                                                                                                                                                   | Difference between the R <sub>ON</sub> of any two switches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mathbf{I}_D  (\mathbf{I}_S)_{OFF};$                                                                                                                                    | Current at terminals D or S. This is a leakage current when the switch is "OFF."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I <sub>D</sub> (I <sub>S</sub> ) <sub>ON</sub> :                                                                                                                         | Leakage current that flows from the closed switch into the body. (This leakage will show up as the difference between the current $I_D$ going into the switch and the outgoing current $I_S$ .)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $V_D(V_S)$ :                                                                                                                                                             | Analog voltage on terminal D (S).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C <sub>S</sub> (CD):                                                                                                                                                     | Capacitance between terminal S (D) and<br>ground. (This capacitance is specified<br>for the switch open and closed.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C <sub>DS</sub> :                                                                                                                                                        | Capacitance between terminals D and S.<br>(This will determine the switch isolation<br>over frequency.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>DD</sub> (C <sub>SS</sub> ):                                                                                                                                      | Capacitance between terminals D (S) of any two switches. (This will determine the cross coupling between switches vs. frequency.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C <sub>DD</sub> (C <sub>SS</sub> ):<br>t <sub>ON</sub> :                                                                                                                 | two switches. (This will determine the cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                          | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| t <sub>ON</sub> :                                                                                                                                                        | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON'' condition.<br>Delay time between the 50% points of the                                                                                                                                                                                                                                                                                                                                                                                        |
| ton:<br>toff:                                                                                                                                                            | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON'' condition.<br>Delay time between the 50% points of the<br>digital input and switch 'OFF'' condition.<br>Delay time when switching from one address                                                                                                                                                                                                                                                                                            |
| tON:<br>tOFF:<br>t <sub>transition</sub> :                                                                                                                               | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON' condition.<br>Delay time between the 50% points of the<br>digital input and switch 'OFF'' condition.<br>Delay time when switching from one address<br>state to another.                                                                                                                                                                                                                                                                        |
| ton:<br>toff:<br>t <sub>transition</sub> :<br>V <sub>INL</sub> :                                                                                                         | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON'' condition.<br>Delay time between the 50% points of the<br>digital input and switch 'OFF'' condition.<br>Delay time when switching from one address<br>state to another.<br>Threshold voltage for the low state.                                                                                                                                                                                                                               |
| tON:<br>tOFF:<br>t <sub>transition</sub> :<br>VINL:<br>VINL:<br>VINH:                                                                                                    | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON'' condition.<br>Delay time between the 50% points of the<br>digital input and switch 'OFF'' condition.<br>Delay time when switching from one address<br>state to another.<br>Threshold voltage for the low state.<br>Threshold voltage for the high state.                                                                                                                                                                                      |
| tON:<br>tOFF:<br>t <sub>transition</sub> :<br>V <sub>INL</sub> :<br>V <sub>INH</sub> :<br>I <sub>INL</sub> (I <sub>INH</sub> ):                                          | <ul> <li>two switches. (This will determine the cross coupling between switches vs. frequency.)</li> <li>Delay time between the 50% points of the digital input and switch 'ON" condition.</li> <li>Delay time between the 50% points of the digital input and switch 'OFF" condition.</li> <li>Delay time when switching from one address state to another.</li> <li>Threshold voltage for the low state.</li> <li>Threshold voltage for the high state.</li> <li>Input current of the digital input.</li> <li>Input capacitance to ground of the digital</li> </ul>                                                 |
| tON:<br>tOFF:<br>t <sub>transition</sub> :<br>VINL:<br>VINL:<br>VINH:<br>I <sub>INL</sub> (I <sub>INH</sub> ):<br>C <sub>IN</sub> :                                      | two switches. (This will determine the cross<br>coupling between switches vs. frequency.)<br>Delay time between the 50% points of the<br>digital input and switch 'ON'' condition.<br>Delay time between the 50% points of the<br>digital input and switch 'OFF'' condition.<br>Delay time when switching from one address<br>state to another.<br>Threshold voltage for the low state.<br>Threshold voltage for the high state.<br>Input current of the digital input.<br>Input capacitance to ground of the digital<br>input.                                                                                       |
| ton:<br>toff:<br>t <sub>transition:</sub><br>V <sub>INL</sub> :<br>V <sub>INH</sub> :<br>I <sub>INL</sub> (I <sub>INH</sub> ):<br>C <sub>IN</sub> :<br>V <sub>DD</sub> : | <ul> <li>two switches. (This will determine the cross coupling between switches vs. frequency.)</li> <li>Delay time between the 50% points of the digital input and switch 'ON'' condition.</li> <li>Delay time between the 50% points of the digital input and switch 'OFF'' condition.</li> <li>Delay time when switching from one address state to another.</li> <li>Threshold voltage for the low state.</li> <li>Threshold voltage for the high state.</li> <li>Input current of the digital input.</li> <li>Input capacitance to ground of the digital input.</li> <li>Most positive voltage supply.</li> </ul> |

## **BONDING DIAGRAMS (TOP VIEW)**



## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

## 14-PIN CERAMIC DIP



### AD7512DI

## **14-PIN PLASTIC DIP**



### AD7512DI

### **16-PIN CERAMIC DIP**



### AD7510DI, AD7511DI

### **16-PIN PLASTIC DIP**

