ACPL-W60L and ACPL-K63L High Speed LVTTL Compatible 3.3 Volt/5 Volt Optocouplers

Data Sheet

Description

The ACPL-W60L/K63L are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. The output of the detector IC is an open collector Schottky-clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 15 kV/ μ s at 3.3 V.

This unique design provides maximum AC and DC circuit isolation while achieving LVTTL/LVCMOS compatibility. The optocoupler AC and DC operational parameters are guaranteed from -40 °C to +85 °C allowing trouble-free system performance.

Functional Diagram

TRUTH	I TABLE
(POSITI	VE LOGIC)
LED	OUTPUT
ON	L
OFF	H

A 0.1 μF bypass capacitor must be connected between pins 4 and 6 for ACPL-W60L, and pins 5 and 8 for ACPL-K63L.

Features

- Dual Voltage Operation (3.3V/5V)
- Package clearance/creepage at 8 mm
- Low power consumption
- 15 kV/ μ s minimum Common Mode Rejection (CMR) at V_{CM} = 1000V
- High speed: 15 MBd typical
- LVTTL/LVCMOS compatible
- Low input current capability: 5 mA
- Guaranteed AC and DC performance over temperature: -40 °C to +85 °C
- Available in 6-pin stretched SO-6 and 8 pin stretched SO-8
- Safety approvals: UL, CSA, IEC/EN/DIN EN 60747-5-5

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Fieldbus

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Schematic Diagrams

USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).

These optocouplers are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

These optocouplers are available in stretched SO-6 and
SO-8 package. The part numbers are as follows:

Part number	Package	
ACPL-W60L	Stretched SO-6	
ACPL-K63L	Stretched SO-8	

Ordering Information

Ontion

ACPL-W60L/-K63L is UL Recognized with 5000 V_{rms} for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324.

	Option						
Part Number	RoHS Compliant	Package	Surface Mount	Tape & Reel	UL 5000 V _{rms} / 1 Minute rating	IEC/EN/DIN EN 60747-5-5	Quantity
	-000E	Stretched	Х		Х		100 per tube
ACPL-W60L	-500E	SO-6	Х	Х	Х		1000 per reel
	-560E		Х	Х	Х	Х	1000 per reel
	-000E	Stretched	Х		Х		80 per tube
ACPL-K63L	-500E	SO-8	Х	Х	Х		1000 per reel
	-560E		Х	Х	Х	Х	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-W60L-560E to order product of Stretched SO-6 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

LAND PATTERN RECOMMENDATION 12.65 (0.498) 1.27 (0.050) BSG 0.381 ± 0.127 (0.015 ± 0.005) 6 +0.254 Ħ 0.76 (0.030) 4.580 5 0 (0.180 +0.010) π 4 3 +0.127 6.807 0 +0.005 - 0.000 (0.268) 1.59 ± 0.127 (0.063 ± 0.005) 0.45 (0.018) 7 45° $\textbf{3.180} \pm \textbf{0.127}$ $\textbf{0.20} \pm \textbf{0.10}$ (0.125 ± 0.005) (0.008 ± 0.004) ¥. 4 0.750 ± 0.250 (0.0295 ± 0.010) DIMENSIONS IN MILLIMETERS (INCHES). 11.5 ± 0.250 LEAD COPLANARITY = 0.1 mm (0.004 INCHES). (0.453 ± 0.010)

ACPL-W60L Stretched SO-6 Package

ACPL-K63L Stretched SO-8 Package

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.1 mm (0.004 INCHES).

Recommended Solder Reflow Thermal Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ACPL-W60L/K63L have been approved by the following organizations:

UL

Approval under UL 1577, Component Recognition Program, File E55361.

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

IEC/EN/DIN EN 60747-5-5

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-W60L/K63L	Units	Conditions
Minimum External Air	L (101)	8	mm	Measured from input terminals to output
Gap (External Clearance)				terminals, shortest distance through air.
Minimum External Tracking	L (102)	8	mm	Measured from input terminals to output
(External Creepage)				terminals, shortest distance path along body.
Minimum Internal Plastic		0.08	mm	Through insulation distance, conductor to
Gap (Internal Clearance)				conductor, usually the direct distance
				between the photoemitter and photodetector
				inside the optocoupler cavity.
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
(Comparative Tracking Index)				
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics

Description	Symbol	Characteristic	Units
		ACPL-W60L	
		ACPL-K63L	
Installation classification per DIN VDE 0110/39, Table 1			
for rated mains voltage \leq 150 V _{rms}		I-IV	
for rated mains voltage \leq 300 V _{rms}		I-IV	
for rated mains voltage \leq 600 V _{rms}		1-111	
for rated mains voltage \leq 1000 V _{rms}		-	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	VIORM	1140	V _{peak}
Input to Output Test Voltage, Method b*			
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec,	V _{PR}	2137	V _{peak}
Partial Discharge < 5 pC			
Input-to-Output Test Voltage, Method a*			
V_{IORM} x 1.6 = V_{PR} , Type and Sample Test, t _m = 10 sec,	V _{PR}	1824	V _{peak}
Partial Discharge < 5 pC			
Highest Allowable Overvoltage	VIOTM	8000	V _{peak}
(Transient Overvoltage, t _{ini} = 60 sec)			
Safety Limiting Values – maximum values allowed in the even	t of a failure		
Case Temperature	T _S	175	°C
Input Current	I _{S,INPUT}	230	mA
Output Power	P _{S,OUTPUT}	600	mW
Insulation Resistance at T_S , $V_{IO} = 500 V$	R _S	≥ 10 ⁹	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/ EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Absolute Maximum Ratings (No Derating Required up to 85°C)

Parameter	Symbol	Device**	Min.	Max.	Units	Note
Storage Temperature	Ts		-55	125	°C	
Operating Temperature†	T _A		-40	85	°C	
Average Forward Input Current	IF	ACPL-W60L		20	mA	2
		ACPL-K63L		15		1, 3
Reverse Input Voltage	V _R			5	V	1
Input Power Dissipation	PI			40	mW	
Supply Voltage (1 Minute Maximum)	V _{CC}			7	V	
Output Collector Current	IO			50	mA	1
Output Collector Voltage	Vo			7	V	1
Output Power Dissipation	Po	ACPL-W60L		85	mW	
		ACPL-K63L		60		1, 4
Solder Reflow Temperature Profile		See Pack	age Outline	Drawings sec	tion	

**Ratings apply to all devices except otherwise noted in the Package column.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	I _{FL} *	0	250	μΑ
Input Current, High Level ^[1]	I _{FH} **	5	15	mA
Power Supply Voltage	V _{CC}	2.7	3.6	V
		4.5	5.5	V
Operating Temperature	T _A	-40	85	°C
Fan Out (at $R_L = 1 \ k\Omega$) ^[1]	Ν		5	TTL Loads
Output Pull-up Resistor	RL	330	4 k	Ω

*The off condition can also be guaranteed by ensuring that $V_{FL} \le 0.8$ volts. **The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a 20% LED degradation guardband.

Electrical Specifications

Over Recommended Operating Conditions ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $2.7V \le Vcc \le 3.6V$) unless otherwise specified. All Typicals at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

Parameter	Sym.	Device	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	I _{OH} *			4.5	50	μΑ	$V_{CC} = 3.3 \text{ V}, V_O = 3.3 \text{ V}, \\ I_F = 250 \ \mu\text{A}$	1	1
Input Threshold Current	Ith			3.0	5.0	mA	$V_{CC} = 3.3 \text{ V}, V_O = 0.6 \text{ V},$ I_{OL} (Sinking) = 13 mA	2	
Low Level Output Voltage	V _{OL} *			0.35	0.6	V	$V_{CC} = 3.3 V,$ $I_F = 5 mA,$ I_{OL} (Sinking) = 13 mA	3	
High Level	ICCH	Single		4.7	7.0	mA	$I_F = 0 \text{ mA}$		
Supply Current		Dual		6.9	10.0		$V_{CC} = 3.3 V$		
Low Level	I _{CCL}	Single		7.0	10.0	mA	I _F = 10 mA		
Supply Current		Dual		8.7	15.0	_	V _{CC} = 3.3 V		
Input Forward Voltage	V _F		1.4	1.5	1.75*	V	$T_A = 25^{\circ}C$, $I_F = 10 \text{ mA}$	5	1
Input Reverse Breakdown Voltage	BV _R *		5			V	I _R = 10 μA		1
Input Diode	$\Delta V_F/$			-1.6		mV/°C	I _F = 10 mA		1
Temperature Coefficient	ΔT_A								
Input Capacitance	C _{IN}			60		pF	$f = 1 MHz, V_F = 0 V$		1

Electrical Specifications (DC)

Over recommended operating conditions (T_A=-40°C to +85°C, 4.5V \leq V_{DD} \leq 5.5V) unless otherwise specified. All typicals at V_{CC} = 5 V, TA = 25 °C.

Parameter	Symbol	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	I _{OH}			5.5	100	μΑ	$V_{CC} = 5.5 \text{ V}, V_O = 5.5 \text{ V},$ $I_{FL} = 250 \ \mu\text{A}$	1	1
Input Threshold Current	I _{TH}			2.0	5.0	mA	$V_{CC} = 5.5 \text{ V}, V_{O} = 0.6 \text{ V},$ $I_{OL} > 13 \text{ mA}$	2	
Low Level Output Voltage	V _{OL}			0.35	0.6	V	$V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA},$ $I_{OL(Sinking)} = 13 \text{ mA}$	3	
High Level Supply	I _{CCH}	Single		7.0	10.0	mA	$V_{CC} = 5.5 \text{ V}, \ I_F = 0 \text{ mA}$		
Current		Dual		10.0	15.0	mA	$V_{CC}=5.5~V,~I_F=0~mA$		
Low Level Supply	I _{CCL}	Single		9.0	13.0	mA	$V_{CC} = 5.5 \text{ V}, \ I_F = 10 \text{ mA}$		
Current		Dual		13.0	21.0	mA	$V_{CC} = 5.5 \text{ V}, \ I_F = 10 \text{ mA}$		
Input Forward	VF		1.4	1.5	1.75	V	$T_A = 25 \ ^\circ C$, $I_F = 10 \ mA$	5	1
Voltage			1.3		1.8				
Input Reverse Breakdown Voltage	BV _R		5			V	$I_R = 10 \ \mu A$		1
Input Diode Temperature Coefficient	ΔVF/ΔTA			-1.6		mV/°C	I _F = 10 mA		1
Input Capacitance	CIN			60		рF	$f = 1 MHz, V_F = 0 V$		1

*All Typical at TA=25C, Vcc=5V

Switching Specifications

Over Recommended Temperature ($T_A = -40^{\circ}C$ to $+85^{\circ}C$), $V_{CC} = 3.3$ V, $I_F = 7.5$ mA unless otherwise specified. All Typicals at $T_A = 25^{\circ}C$, $V_{CC} = 3.3$ V.

Parameter	Sym.	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	tplh			90	ns	$\begin{aligned} R_L &= 350 \ \Omega \\ C_L &= 15 \ pF \end{aligned}$	6, 7, 8	1, 6
Propagation Delay Time to Low Output Level	t _{PHL}			75	ns			1,7
Pulse Width Distortion	t _{PHL} – t _{PLH}			25	ns		8	9
Propagation Delay Skew	t _{PSK}			40	ns			8, 9
Output Rise Time (10-90%)	t _r		45		ns			1
Output Fall Time (90-10%)	t _f		20		ns			1

Switching Specifications (AC)

Over recommended operating conditions $T_A = -40$ °C to 85 °C, $V_{CC} = 5$ V, $I_F = 7.5$ mA unless otherwise specified. All typicals at $V_{CC} = 5$ V, $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	tplh	20	48	75	ns	$T_A = 25^{\circ}C,$ $R_L = 350\Omega,$ $C_L = 15 \text{ pF}$	6,7,8	1,6
				100	ns	R _L = 350Ω, C _L = 15 pF		
Propagation Delay Time to Low Output Level	tphl	25	50	75	ns	$T_A = 25^{\circ}C$ $R_L = 350\Omega,$ $C_L = 15 \text{ pF}$		1,7
				100	ns	R _L = 350Ω, C _L = 15 pF		
Pulse Width Distortion	t _{PHL} - t _{PLH}		3.5	35	ns	R _L = 350 Ω, C _L = 15 pF	8	9
Propagation Delay Skew	t _{psk}			40	ns	R _L = 350Ω, C _L = 15 pF		8,9
Output Rise Time (10%-90%)	t _r		24		ns	R _L = 350Ω, C _L = 15 pF		1
Output Fall Time (10%-90%)	t _f		10		ns	R _L = 350Ω, C _L = 15 pF		1

Parameter	Sym.	Device	Min.	Тур.	Units	Test Conditions	Fig.	Note
Output High Level Common Mode Transient Immunity	CM _H	ACPL-W60L ACPL-K63L	15	25	kV/μs	$\begin{split} &V_{CC} = 3.3 \text{ V}, \text{ I}_{F} = 0 \text{ mA}, \\ &V_{O(MIN)} = 2 \text{ V}, \\ &R_{L} = 350 \ \Omega, \\ &T_{A} = 25^{\circ}\text{C}, \\ &V_{CM} = 1000 \text{ V} \text{ and } V_{CM} = 10 \text{ V} \end{split}$	9	10, 12
Output Low Level Common Mode Transient Immunity	CM _L	ACPL-W60L ACPL-K63L	15	25	kV/μs	$\begin{split} V_{CC} &= 3.3 \text{ V}, \text{ I}_{F} = 7.5 \text{ mA}, \\ V_{O(MAX)} &= 0.8 \text{ V}, \\ R_{L} &= 350 \ \Omega, \\ T_{A} &= 25^{\circ}\text{C}, \\ V_{CM} &= 1000 \text{ V} \text{ and } V_{CM} = 10 \text{ V} \end{split}$	9	10, 12
Output High Level Common Mode Transient Immunity	CM _H	ACPL-W60L ACPL-K63L	10	15	kV/μs	$\begin{split} &V_{CC} = 5 \text{ V, } I_F = 0 \text{ mA,} \\ &V_{O(MIN)} = 2 \text{ V,} \\ &R_L = 350 \ \Omega, \\ &T_A = 25^\circ\text{C}, \\ &V_{CM} = 1000 \text{ V} \end{split}$	9	10, 12
Output Low Level Common Mode Transient Immunity	CM _L	ACPL-W60L ACPL-K63L	10	15	kV/μs	$\begin{split} V_{CC} &= 5 \text{ V, } I_F = 7.5 \text{ mA,} \\ V_{O(MAX)} &= 0.8 \text{ V,} \\ R_L &= 350 \ \Omega, \\ T_A &= 25^\circ\text{C}, \\ V_{CM} &= 1000 \text{ V} \end{split}$	9	11, 12

Package Characteristics

All Typica	ls at T _A =	: 25°C.
------------	------------------------	---------

Parameter	Sym.	Package	Min.	Тур.	Мах	Units	Test Conditions	Fig.	Note
Input-Output	I _{I-0} *	Single			1	μA	45% RH, t = 5 s,		13, 14
Insulation						•	$V_{I-O} = 3 \text{ kV DC}, T_A = 25 \text{ °C}$		
Input-Output	V _{ISO}	Single,	5000			Vrms	RH ≤ 50%, t = 1 min,		13, 14
Momentary		Dual Channel					T _A = 25 °C		
Withstand									
Voltage*									
Input-Output	R _{I-O}	Single,		10 ¹²		Ω	V _{I-O} =500 V _{dc}		1, 13, 15
Resistance		Dual Channel							
Input-Output	CI-O	Single,		0.5		pF	f = 1 MHz, T _A = 25 °C		1, 13, 15
Capacitance		Dual Channel							
Input-Input	I _{I-I}	Dual Channel		0.005		μΑ	$RH \le 45\%, t = 5 s,$		16
Insulation							$V_{I-I} = 500 V$		
Leakage									
Current									
Resistance	R _{I-I}	Dual Channel		10 ¹¹		Ω	_		16
(Input-Input)									
Capacitance	CI-I	Dual Channel		0.25		pG	f = 1 MHz		16
(Input-Input)									

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

Notes:

- 1. Each channel.
- 2 Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 20 mA.
- 3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 15 mA.
- 4. Derate linearly above +80°C free-air temperature at a rate of 2.7 mW/°C.
- 5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.
- 6. The t_{PLH} propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
- 7. The t_{PHL} propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
- t_{PSK} is equal to the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature and specified test conditions.
- 9. See test circuit for measurement details.
- 10. CM_H is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state (i.e., $V_0 > 2.0$ V).
- 11. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $V_o < 0.8 V$).
- 12. For sinusoidal voltages, $(|dV_{CM}| / dt)_{max} = \pi f_{CM} V_{CM}$ (p-p).
- 13. Single channel device is considered a two-terminal part when pins 1, 2, 3 are shorted together, and pins 4, 5, 6 shorted together separately. Dual channel device is considered a two-terminal part when pins 1, 2, 3, 4 are shorted together, and pins 5, 6, 7, 8 are shorted together separately.
- 14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage detection current limit, I_{I-O} ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/ EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
- 15. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.
- 16. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.

Figure 1. Typical high level output current vs. temperature.

Figure 2. Typical input threshold current vs. temperature.

Figure 3. Typical low level output voltage vs. temperature.

Figure 4. Typical low level output current vs. temperature.

Figure 5. Typical input diode forward characteristic.

Figure 6. Test circuit for t_{PHL} and t_{PLH}

Figure 7. Typical propagation delay vs. temperature

Figure 8. Typical pulse width distortion vs. temperature

Figure 9. Test circuit for common mode transient immunity and typical waveforms

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV01-0206EN AV02-0890EN - April 4, 2013

